20. Valid Parentheses 有效括号
Given a string containing just the characters '('
, ')'
, '{'
, '}'
, '['
and ']'
, determine if the input string is valid.
The brackets must close in the correct order, "()"
and "()[]{}"
are all valid but "(]"
and "([)]"
are not.
思路,依次将这些字符入栈,判断栈顶元素与当前元素是否是对应上的,是则pop,不是则入栈,到最后判断栈是否为空。
- class Solution {
- public:
- bool isValid(string s) {
- stack<char> result;
- int n=s.size();
- if(n==0) return true;
- for(int i=0;i<n;i++)
- {
- if(result.empty())
- result.push(s[i]);
- else if(result.top()=='('&&s[i]==')'||
- result.top()=='['&&s[i]==']'||
- result.top()=='{'&&s[i]=='}')
- result.pop();
- else
- result.push(s[i]);
- }
- return result.empty();
- }
- };
别人的思路:
这种方法能够更快的判断不符合条件的字符串,不需要将字符串遍历完成。
- class Solution {
- public:
- bool isValid(string s) {
- stack<char> paren;
- for (char& c : s) {
- switch (c) {
- case '(':
- case '{':
- case '[': paren.push(c); break;
- case ')': if (paren.empty() || paren.top()!='(') return false; else paren.pop(); break;
- case '}': if (paren.empty() || paren.top()!='{') return false; else paren.pop(); break;
- case ']': if (paren.empty() || paren.top()!='[') return false; else paren.pop(); break;
- default: ; // pass
- }
- }
- return paren.empty() ;
- }
- };
注意:只要当前的字符是)}]三个的一个,如果不能与栈顶结合,那就说明这个字符串是错误的。比如下面的代码。
- class Solution {
- public:
- bool isValid(string s) {
- stack<char> result;
- for(auto & a:s){
- if(a=='(') result.push(')');
- else if(a=='{') result.push('}');
- else if(a=='[') result.push(']');
- else if(result.empty()||result.top()!=a)//这里直接出栈判断
- return false;
- else result.pop();
- }
- return result.empty();
- }
22. Generate Parentheses
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
查看回溯部分
32. Longest Valid Parentheses 最长有效括号组合
动态规划:
-
s and \text{s}[i - 1] = \text{‘(’}s[i−1]=‘(’, i.e. string looks like ``.......()" \Rightarrow‘‘.......()"⇒
\text{dp}[i]=\text{dp}[i-2]+2dp[i]=dp[i−2]+2
We do so because the ending "()" portion is a valid substring anyhow and leads to an increment of 2 in the length of the just previous valid substring's length.
-
\text{s}[i] = \text{‘)’}s[i]=‘)’ and \text{s}[i - 1] = \text{‘)’}s[i−1]=‘)’, i.e. string looks like ``.......))" \Rightarrow‘‘.......))"⇒
if \text{s}[i - \text{dp}[i - 1] - 1] = \text{‘(’}s[i−dp[i−1]−1]=‘(’ then
\text{dp}[i]=\text{dp}[i-1]+\text{dp}[i-\text{dp}[i-1]-2]+2dp[i]=dp[i−1]+dp[i−dp[i−1]−2]+2
class Solution { public: int longestValidParentheses(string s) { int n=s.size(); if(n<=1) return 0; int res=0; vector<int> dp(n,0); if(s[0]=='('&&s[1]==')') { dp[1]=2; res=2; } for(int i=2;i<n;i++)//注意这里并不是奇偶数的遍历,因为不一定是奇数或者偶数为是有效的 { if(s[i]==')') { if(s[i-1]=='(') dp[i]=dp[i-2]+2; else if(s[i-1-dp[i-1]]=='(') dp[i]=dp[i-1]+dp[i-1-dp[i-1]-1]+2; } res=max(res,dp[i]); } return res; } };
方法3 栈 -
方法4 空间1 left right
public class Solution {
public int longestValidParentheses(String s) {
int left = 0, right = 0, maxlength = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * right);
} else if (right >= left) {
left = right = 0;
}
}
left = right = 0;
for (int i = s.length() - 1; i >= 0; i--) {
if (s.charAt(i) == '(') {
left++;
} else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * left);
} else if (left >= right) {
left = right = 0;
}
}
return maxlength;
}
}
301. Remove Invalid Parentheses
Remove the minimum number of invalid parentheses in order to make the input string valid. Return all possible results.
Note: The input string may contain letters other than the parentheses (
and )
.
Examples:
"()())()" -> ["()()()", "(())()"]
"(a)())()" -> ["(a)()()", "(a())()"]
")(" -> [""]