Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
5 5Sample Output
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
4题意:N只牛。 每只牛对某个位置有偏好。 等于说是相匹配。 问最大有多少只牛是匹配的。 等于问的最大匹配数。
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
using namespace std;
#define LL long long
#define INF 1E4 * 1E9
#define pi acos(-1)
#define endl '\n'
#define me(x) memset(x,0,sizeof(x));
const int maxn=1e3+5;
const int maxx=1e6+5;
int mapp[maxn][maxn],vis[maxn],link[maxn];
int i,n,m,a,k,cnt;
int dfs(int x)
{
int i;
for(i=1; i<=n; i++)
{
if(!vis[i] && mapp[x][i])
{
vis[i]=1;
if(link[i]==0 || dfs(link[i]))
{
link[i]=x;
return 1;
}
}
}
return 0;
}
void Hungary()
{
cnt=0;
for(i=1; i<=n; i++)
{
me(vis);
if(dfs(i))
{
cnt++;
}
}
}
int main()
{
while(cin>>n>>m){
me(mapp); me(link);
for(i=1; i<=n; i++)
{
cin>>k;
for(int j=1; j<=k; j++)
{
cin>>a;
mapp[i][a]=1;
}
}
Hungary();
cout<<cnt<<endl;
}
}
POJ - 3020
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?
2Sample Output
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*
17
5
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=1e3+5;
int mapp[maxn][maxn],vis[maxn][maxn],link[maxn];
bool vist[maxn];
int h,w,cnt,ip;
int dx[]={0,1,-1,0};
int dy[]={1,0,0,-1};
int dfs(int x)
{
int i;
for(i=1; i<=ip; i++)
{
if(!vist[i] && mapp[x][i])
{
vist[i]=true;
if(link[i]==0 || dfs(link[i]))
{
link[i]=x;
return true;
}
}
}
return false;
}
void Hungary()
{
int i;
cnt=0;
for(i=1; i<=ip; i++)
{
memset(vist,0,sizeof(vist));
if(dfs(i))
{
cnt++;
}
}
}
int main()
{
int i,j,t,k,from,to;
char s;
cin>>t;
while(t--)
{
cin>>h>>w;
memset(mapp,0,sizeof(mapp));
memset(link,0,sizeof(link));
memset(vis,0,sizeof(vis));
ip=0;
for(i=1;i<=h;i++)
for(j=1;j<=w;j++)
{
cin>>s;
if(s=='*')
vis[i][j]=++ip;
}
for(i=1;i<=h;i++)
for(j=1;j<=w;j++)
{
if(vis[i][j])
for(int k=0;k<4;k++)
{
int x=i+dx[k];
int y=j+dy[k];
if(vis[x][y])
mapp[vis[i][j]][vis[x][y]]=1;
}
}
Hungary();
printf("%d\n",ip-cnt/2);
}
return 0;
}
UVA - 11396
Problem B
Claw Decomposition
Input: Standard Input
Output: Standard Output
A claw is defined as a pointed curved nail on the end of each toe in birds, some reptiles, and some mammals. However, if you are a graph theory enthusiast, you may understand the following special class of graph as shown in the following figure by the word claw.
If you are more concerned about graph theory terminology, you may want to define claw as K1,3.
Let’s leave the definition for the moment & come to the problem. You are given a simple undirected graph in which every vertex has degree 3. You are to figure out whether the graph can be decomposed into claws or not.
Just for the sake of clarity, a decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.
Input
There will be several cases in the input file. Each case starts with the number of vertices in the graph, V (4<=V<=300). This is followed by a list of edges. Every line in the list has two integers, a & b, the endpoints of an edge (1<=a,b<=V). The edge list ends with a line with a pair of 0. The end of input is denoted by a case with V=0. This case should not be processed.
Output
For every case in the input, print YES if the graph can be decomposed into claws & NO otherwise.
Sample Input Output for Sample Input
4 1 2 1 3 1 4 2 3 2 4 3 4 0 0 6 1 2 1 3 1 6 2 3 2 5 3 4 4 5 4 6 5 6 0 0 0 |
NO NO |
爪是一个点连三条边,因为题目说明了每条边只能属于一个爪,所以图中边的总数应该是3的倍数,然后从每个点的度数为3,可以得到m*2 == n*3。(m为边数,n为点数)
#include<iostream>#include<string>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cctype>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
using namespace std;
#define LL long long
#define INF 1E4 * 1E9
#define pi acos(-1)
#define endl '\n'
#define me(x) memset(x,0,sizeof(x));
const int maxn=1e3+5;
const int maxx=1e6+5;
int color[maxn];
vector<int> G[maxn];
int dfs(int u)
{
for(int i = 0;i < G[u].size();i++)
{
int v = G[u][i];
if(color[v] == color[u]) return 0;
if(!color[v])
{
color[v] = 3 - color[u];
if(!dfs(v)) return 0;
}
}
return 1;
}
int main(){
int n,m;
while(cin>>n)
{
if(n == 0) break;
int a,b;
m = 0;
me(color);
for(int i = 0;i <= n;i++) G[i].clear();
while(cin>>a>>b)
{
if(a == 0 && b == 0) break;
G[a].push_back(b); G[b].push_back(a);
m++;
}
color[1] = 1;
if(m*2 == n*3 && dfs(1)) puts("YES");
else puts("NO");
}
}