【图像算法】图像特征:GLCM
SkySeraph Aug 27th 2011 HQU
Email:zgzhaobo@gmail.com QQ:452728574
Latest Modified Date:Aug 27th 2011 HQU
-------------------------------------------------------------------------------------------------------------------------------
一 原理
1 概念:GLCM,即灰度共生矩阵,GLCM是一个L*L方阵,L为源图像的灰度级
2 含义:描述的是具有某种空间位置关系的两个像素的联合分布,可看成两个像素灰度对的联合直方图,是一种二阶统计
3 常用的空间位置关系:有四种,垂直、水平、正负45°
4 常用的GLCM特征特征:
(1)能量: 是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。
如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。
当共生矩阵中元素集中分布时,此时ASM值大。ASM值大表明一种较均一和规则变化的纹理模式。
(2)对比度:反映了图像的清晰度和纹理沟纹深浅的程度。纹理沟纹越深,其对比度越大,视觉效果越清晰;
反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的象素对越多,这个值越大。
灰度公生矩阵中远离对角线的元素值越大,CON越大。
(3)相关: 它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。
当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。如果图像中有水平方向纹理,
则水平方向矩阵的COR大于其余矩阵的COR值。
(4)熵: 是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、
空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。
(5)逆差距:反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。
5 原理理解:
假设衣服图像的纹理矩阵P如下:
P = [ 0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
]
①相距为1(第一个参数),位置方向为0°第二个参数)的GLCM矩阵如下:
[ 0 10 10
10 0 10
10 10 0
]
//解析:因为P中灰度级为3,故GLCM为3*3方阵
②相距为1(第一个参数),位置方向为正负45°第二个参数)的GLCM矩阵如下:
[ 16 0 0
0 16 0
0 0 18
]
-------------------------------------------------------------------------------------------------------------------------------
二 结果
图像(lenna):
另附:关于lenna,风靡图像界这张图像,源原轶事:http://www.cs.cmu.edu/~chuck/lennapg/ ^_^
单个 GLCM以及4个方向的均值、方差GLCM特征:
-------------------------------------------------------------------------------------------------------------------------------
三 源码
类头文件:
// FeatureDetect.h: interface for the FeatureDetect class.
//
///////////////////////////////////////////////////////////////////////////////////////
/* Author: skyseraph/zhaobo 2011/4 zgzhaobo@gmal.com
*/
/////////////////////////////////////////////////////////////////////////////////////// #include <math.h>
#include "windows.h"
#include "iostream"
usingnamespace std; typedef struct glcmFeature
{
double dCorrelation;
double dEnergy;
double dEntropy;
double dInertiaQuadrature;
double dLocalCalm;
}glcmFeature; typedef struct glcmFeatureVar
{
double dAveCorrelation;
double dAveEnergy;
double dAveEntropy;
double dAveInertiaQuadrature;
double dAveLocalCalm;
double dVarCorrelation;
double dVarEnergy;
double dVarEntropy;
double dVarInertiaQuadrature;
double dVarLocalCalm;
}glcmFeatureVar; class ZBGLCM
{
public:
ZBGLCM();
~ZBGLCM(); void ComputeMatrix(BYTE **LocalImage, int LocalImageWidth);
void ComputeFeature(double&FeatureEnergy, double&FeatureEntropy,
double&FeatureInertiaQuadrature, double&FeatureCorrelation,
double&FeatureLocalCalm, int** pMatrix, int dim);
glcmFeature pGLCMF;
glcmFeatureVar pGLCMFVar;
glcmFeature GLCMFeature(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth,int dir);
glcmFeatureVar GLCMFeatureVar(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth); public:
double FeatureLocalCalmRD;
double FeatureLocalCalmLD;
double FeatureLocalCalmV;
double FeatureLocalCalmH;
double FeatureCorrelationRD;
double FeatureCorrelationLD;
double FeatureCorrelationV;
double FeatureCorrelationH;
double FeatureInertiaQuadratureRD;
double FeatureInertiaQuadratureLD;
double FeatureInertiaQuadratureV;
double FeatureInertiaQuadratureH;
double FeatureEntropyRD;
double FeatureEntropyLD;
double FeatureEntropyV;
double FeatureEntropyH;
double FeatureEnergyRD;
double FeatureEnergyLD;
double FeatureEnergyV;
double FeatureEnergyH; int FilterWindowWidth;
int distance;
int GrayLayerNum;
int L;
int** PMatrixRD;
int** PMatrixLD;
int** PMatrixV;
int** PMatrixH;
};
类源文件-1:初始化和资源释放
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
ZBGLCM::ZBGLCM()
{
PMatrixRD = NULL;
PMatrixLD = NULL;
PMatrixV = NULL;
PMatrixH = NULL; distance =;
FilterWindowWidth =;
GrayLayerNum =;
L=; int i;
PMatrixH =newint*[GrayLayerNum];
PMatrixLD=newint*[GrayLayerNum];
PMatrixRD=newint*[GrayLayerNum];
PMatrixV =newint*[GrayLayerNum]; for(i=; i<GrayLayerNum; i++)
{
PMatrixH[i] =newint[GrayLayerNum];
PMatrixLD[i]=newint[GrayLayerNum];
PMatrixRD[i]=newint[GrayLayerNum];
PMatrixV[i] =newint[GrayLayerNum];
}
} ZBGLCM::~ZBGLCM()
{
if(PMatrixH !=NULL)
{
for(int i=; i<GrayLayerNum; i++)
{
delete [] PMatrixH[i];
PMatrixH[i] = NULL; //已析构了,后不再加
}
delete [] PMatrixH;
PMatrixH = NULL;
}
if(PMatrixLD !=NULL)
{
for(int i=; i<GrayLayerNum; i++)
{
delete[] PMatrixLD[i];
}
delete [] PMatrixLD;
}
if(PMatrixRD !=NULL)
{
for(int i=; i<GrayLayerNum; i++)
delete [] PMatrixRD[i];
delete [] PMatrixRD;
}
if(PMatrixV !=NULL)
{
for(int i=; i<GrayLayerNum; i++)
delete [] PMatrixV[i];
delete [] PMatrixV;
}
}
类源文件-2:计算纹理特征
void ZBGLCM::ComputeFeature(double&FeatureEnergy, double&FeatureEntropy,
double&FeatureInertiaQuadrature, double&FeatureCorrelation,
double&FeatureLocalCalm, int** pMatrix, int dim)
{
int i,j;
double**pdMatrix;
pdMatrix =newdouble*[dim];
for(i=; i<dim; i++)
pdMatrix[i] =newdouble[dim]; int total =;
for(i=; i<dim; i++)
{
for(j=; j<dim; j++)
{
total += pMatrix[i][j];
}
}
for(i=; i<dim; i++)
{
for(j=; j<dim; j++)
{
pdMatrix[i][j] = (double)pMatrix[i][j]/(double)total;
}
} FeatureEnergy =0.0;
FeatureEntropy =0.0;
FeatureInertiaQuadrature =0.0;
FeatureLocalCalm =0.0; for(i=; i<dim; i++)
{
for(j=; j<dim; j++)
{
FeatureEnergy += pdMatrix[i][j]*pdMatrix[i][j];
if(pdMatrix[i][j]>1e-)
{
FeatureEntropy -= pdMatrix[i][j]*log(pdMatrix[i][j]);
}
FeatureInertiaQuadrature += (double)(i-j)*(double)(i-j)*pdMatrix[i][j];
FeatureLocalCalm += pdMatrix[i][j]/(+(double)(i-j)*(double)(i-j));
}
} double ux =0.0;
double localtotal =0.0;
for(i=; i<dim; i++)
{
localtotal =0.0;
for(j=; j<dim; j++)
{
localtotal += pdMatrix[i][j];
}
ux += (double)i * localtotal;
} double uy =0.0;
for(j=; j<dim; j++)
{
localtotal =0.0;
for(i=; i<dim; i++)
{
localtotal += pdMatrix[i][j];
}
uy += (double)j * localtotal;
} double sigmax =0.0;
for(i=; i<dim; i++)
{
localtotal =0.0;
for(j=; j<dim; j++)
{
localtotal += pdMatrix[i][j];
}
sigmax += (double)(i-ux) * (double)(i-ux) * localtotal;
} double sigmay =0.0;
for(j=; j<dim; j++)
{
localtotal =0.0;
for(i=; i<dim; i++)
{
localtotal += pdMatrix[i][j];
}
sigmay += (double)(j-uy) * (double)(j-uy) * localtotal;
} FeatureCorrelation =0.0;
for(i=; i<dim; i++)
{
for(j=; j<dim; j++)
{
FeatureCorrelation += (double)(i-ux) * (double)(j-uy) * pdMatrix[i][j];
}
}
if(sigmax !=&& sigmay !=)
{
FeatureCorrelation /= sigmax;
FeatureCorrelation /= sigmay;
}
else
FeatureCorrelation =; if(pdMatrix !=NULL)
{
for(i=; i<dim; i++)
{
delete [] pdMatrix[i];
pdMatrix[i] = NULL;
}
delete [] pdMatrix;
pdMatrix = NULL;
}
}
类源文件-3:计算共生矩阵
void ZBGLCM::ComputeMatrix(BYTE **LocalImage, int LocalImageWidth)
{
int i,j; BYTE **NewImage;
NewImage =new BYTE*[LocalImageWidth];
if(NewImage==NULL)
return;
for(i=; i<LocalImageWidth; i++)
{
NewImage[i] =new BYTE[LocalImageWidth];
if(NewImage[i]==NULL)
return;
} for(i=; i<LocalImageWidth; i++)
{
for(j=; j<LocalImageWidth; j++)
{
NewImage[i][j] = LocalImage[i][j] / (/GrayLayerNum);
}
} for(i=; i<GrayLayerNum; i++)
{
for(j=; j<GrayLayerNum; j++)
{
PMatrixH[i][j] =;
PMatrixLD[i][j] =;
PMatrixRD[i][j] =;
PMatrixV[i][j] =;
}
} for(i=; i<LocalImageWidth; i++)
{
for(j=; j<LocalImageWidth-distance; j++)
{
PMatrixH[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[i][j+distance]] +=;
PMatrixH[(unsigned int)NewImage[i][j+distance]][(unsigned int)NewImage[i][j]] +=;
}
} for(i=; i<LocalImageWidth-distance; i++)
{
for(j=; j<LocalImageWidth; j++)
{
PMatrixV[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[i+distance][j]] +=;
PMatrixV[(unsigned int)NewImage[i+distance][j]][(unsigned int)NewImage[i][j]] +=;
}
} for(i=; i<LocalImageWidth-distance; i++)
{
for(j=; j<LocalImageWidth-distance; j++)
{
int newi, newj;
newi = i+distance;
newj = j+distance;
PMatrixLD[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[newi][newj]] +=;
PMatrixLD[(unsigned int)NewImage[newi][newj]][(unsigned int)NewImage[i][j]] +=;
}
} for(i=distance; i<LocalImageWidth; i++)
{
for(j=; j<LocalImageWidth-distance; j++)
{
int newi, newj;
newi = i-distance;
newj = j+distance;
PMatrixRD[(unsigned int)NewImage[i][j]][(unsigned int)NewImage[newi][newj]] +=;
PMatrixRD[(unsigned int)NewImage[newi][newj]][(unsigned int)NewImage[i][j]] +=;
}
} if(NewImage !=NULL)
{
for(i=; i<LocalImageWidth; i++)
{
delete [] NewImage[i];
NewImage[i] = NULL;
}
delete [] NewImage;
NewImage = NULL;
}
}
类源文件-4:计算GLCM特征
glcmFeature ZBGLCM::GLCMFeature(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth,int dir)
{
assert(ImageHeight>FilterWindowWidth && ImageWidth > FilterWindowWidth); double dEnergy =0.0;
double dEntropy =0.0;
double dInertiaQuadrature =0.0;
double dLocalCalm =0.0;
double dCorrelation =0.0;
double dEnergy1 =0.0;
double dEntropy1 =0.0;
double dInertiaQuadrature1=0.0;
double dLocalCalm1 =0.0;
double dCorrelation1 =0.0; int rolltimeH = ImageHeight/FilterWindowWidth;
int rolltimeW = ImageWidth /FilterWindowWidth;
int i,j;
int p,q; unsigned char** arLocalImage;
arLocalImage=(unsigned char**)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char*));
for( i=;i<FilterWindowWidth;i++)
{
arLocalImage[i]=(unsigned char*)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char));
} for(i=; i< rolltimeH; i++)
{
for(j=; j<rolltimeW; j++)
{
for(p=; p<FilterWindowWidth; p++)
{
for(q=; q<FilterWindowWidth; q++)
{
arLocalImage[p][q] =*((char*)ImageArray+(ImageHeight--(i*FilterWindowWidth+p))*ImageWidth+j*FilterWindowWidth+q);
}
}
ComputeMatrix(arLocalImage, FilterWindowWidth);
switch (dir)
{
case0:
ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixH, GrayLayerNum);
break;
case1:
ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixRD, GrayLayerNum);
break;
case2:
ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixV, GrayLayerNum);
break;
case3:
ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixLD, GrayLayerNum);
break;
default:
ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixH, GrayLayerNum);
break;
}
dEnergy += dEnergy1;
dEntropy += dEntropy1;
dInertiaQuadrature += dInertiaQuadrature1;
dCorrelation += dCorrelation1;
dLocalCalm += dLocalCalm1;
}
}
dEnergy /= (rolltimeH*rolltimeW);
dEntropy /= (rolltimeH*rolltimeW);
dInertiaQuadrature /= (rolltimeH*rolltimeW);
dCorrelation /= (rolltimeH*rolltimeW);
dLocalCalm /= (rolltimeH*rolltimeW); pGLCMF.dEnergy = dEnergy ;
pGLCMF.dEntropy = dEntropy;
pGLCMF.dInertiaQuadrature = dInertiaQuadrature;
pGLCMF.dCorrelation = dCorrelation;
pGLCMF.dLocalCalm = dLocalCalm; for(i=; i<FilterWindowWidth; i++)
{
free(arLocalImage[i]) ;
arLocalImage[i] = NULL;
}
free(arLocalImage);
arLocalImage = NULL; return pGLCMF;
}
类源文件-5:计算GLCM特征均值和方差
glcmFeatureVar ZBGLCM::GLCMFeatureVar(BYTE* ImageArray,long ImageWidth,long ImageHeight,int FilterWindowWidth)
{
assert(ImageHeight>FilterWindowWidth && ImageWidth > FilterWindowWidth); double dEnergy =0.0;
double dEntropy =0.0;
double dInertiaQuadrature =0.0;
double dLocalCalm =0.0;
double dCorrelation =0.0; double dEnergy1 =0.0;
double dEntropy1 =0.0;
double dInertiaQuadrature1=0.0;
double dLocalCalm1 =0.0;
double dCorrelation1 =0.0; double dEnergy2 =0.0;
double dEntropy2 =0.0;
double dInertiaQuadrature2=0.0;
double dLocalCalm2 =0.0;
double dCorrelation2 =0.0; double dEnergy3 =0.0;
double dEntropy3 =0.0;
double dInertiaQuadrature3=0.0;
double dLocalCalm3 =0.0;
double dCorrelation3 =0.0; double dEnergy4 =0.0;
double dEntropy4 =0.0;
double dInertiaQuadrature4=0.0;
double dLocalCalm4 =0.0;
double dCorrelation4 =0.0; double dEnergy11 =0.0;
double dEntropy11 =0.0;
double dInertiaQuadrature11=0.0;
double dLocalCalm11 =0.0;
double dCorrelation11 =0.0; double dEnergy22 =0.0;
double dEntropy22 =0.0;
double dInertiaQuadrature22=0.0;
double dLocalCalm22 =0.0;
double dCorrelation22 =0.0; double dEnergy33 =0.0;
double dEntropy33 =0.0;
double dInertiaQuadrature33=0.0;
double dLocalCalm33 =0.0;
double dCorrelation33 =0.0; double dEnergy44 =0.0;
double dEntropy44 =0.0;
double dInertiaQuadrature44=0.0;
double dLocalCalm44 =0.0;
double dCorrelation44 =0.0; int rolltimeH = ImageHeight/FilterWindowWidth;
int rolltimeW = ImageWidth /FilterWindowWidth;
int i,j;
int p,q; unsigned char** arLocalImage;
arLocalImage=(unsigned char**)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char*));
for( i=;i<FilterWindowWidth;i++)
{
arLocalImage[i]=(unsigned char*)calloc((unsigned)FilterWindowWidth,sizeof(unsigned char));
} for(i=; i< rolltimeH; i++)
{
for(j=; j<rolltimeW; j++)
{
for(p=; p<FilterWindowWidth; p++)
{
for(q=; q<FilterWindowWidth; q++)
{
arLocalImage[p][q] =*((char*)ImageArray+(ImageHeight--(i*FilterWindowWidth+p))*ImageWidth+j*FilterWindowWidth+q);
}
}
ComputeMatrix(arLocalImage, FilterWindowWidth);
ComputeFeature(dEnergy1, dEntropy1, dInertiaQuadrature1, dCorrelation1, dLocalCalm1, PMatrixH, GrayLayerNum);
dEnergy += dEnergy1;
dEntropy += dEntropy1;
dInertiaQuadrature += dInertiaQuadrature1;
dCorrelation += dCorrelation1;
dLocalCalm += dLocalCalm1;
dEnergy11 += dEnergy1;
dEntropy11 += dEntropy1;
dInertiaQuadrature11 += dInertiaQuadrature1;
dCorrelation11 += dCorrelation1;
dLocalCalm11 += dLocalCalm1;
ComputeMatrix(arLocalImage, FilterWindowWidth);
ComputeFeature(dEnergy2, dEntropy2, dInertiaQuadrature2, dCorrelation2, dLocalCalm2, PMatrixRD, GrayLayerNum);
dEnergy += dEnergy2;
dEntropy += dEntropy2;
dInertiaQuadrature += dInertiaQuadrature2;
dCorrelation += dCorrelation2;
dLocalCalm += dLocalCalm2;
dEnergy22 += dEnergy2;
dEntropy22 += dEntropy2;
dInertiaQuadrature22 += dInertiaQuadrature2;
dCorrelation22 += dCorrelation2;
dLocalCalm22 += dLocalCalm2;
ComputeMatrix(arLocalImage, FilterWindowWidth);
ComputeFeature(dEnergy3, dEntropy3, dInertiaQuadrature3, dCorrelation3, dLocalCalm3, PMatrixV, GrayLayerNum);
dEnergy += dEnergy3;
dEntropy += dEntropy3;
dInertiaQuadrature += dInertiaQuadrature3;
dCorrelation += dCorrelation3;
dLocalCalm += dLocalCalm3;
dEnergy33 += dEnergy3;
dEntropy33 += dEntropy3;
dInertiaQuadrature33 += dInertiaQuadrature3;
dCorrelation33 += dCorrelation3;
dLocalCalm33 += dLocalCalm3;
ComputeMatrix(arLocalImage, FilterWindowWidth);
ComputeFeature(dEnergy4, dEntropy4, dInertiaQuadrature4, dCorrelation4, dLocalCalm4, PMatrixLD, GrayLayerNum);
dEnergy += dEnergy4;
dEntropy += dEntropy4;
dInertiaQuadrature += dInertiaQuadrature4;
dCorrelation += dCorrelation4;
dLocalCalm += dLocalCalm4;
dEnergy44 += dEnergy4;
dEntropy44 += dEntropy4;
dInertiaQuadrature44 += dInertiaQuadrature4;
dCorrelation44 += dCorrelation4;
dLocalCalm44 += dLocalCalm4; }
}
dEnergy /= (rolltimeH*rolltimeW);
dEntropy /= (rolltimeH*rolltimeW);
dInertiaQuadrature /= (rolltimeH*rolltimeW);
dCorrelation /= (rolltimeH*rolltimeW);
dLocalCalm /= (rolltimeH*rolltimeW); dEnergy11 /= (rolltimeH*rolltimeW);
dEntropy11 /= (rolltimeH*rolltimeW);
dInertiaQuadrature11 /= (rolltimeH*rolltimeW);
dCorrelation11 /= (rolltimeH*rolltimeW);
dLocalCalm11 /= (rolltimeH*rolltimeW); dEnergy22 /= (rolltimeH*rolltimeW);
dEntropy22 /= (rolltimeH*rolltimeW);
dInertiaQuadrature22 /= (rolltimeH*rolltimeW);
dCorrelation22 /= (rolltimeH*rolltimeW);
dLocalCalm22 /= (rolltimeH*rolltimeW); dEnergy33 /= (rolltimeH*rolltimeW);
dEntropy33 /= (rolltimeH*rolltimeW);
dInertiaQuadrature33 /= (rolltimeH*rolltimeW);
dCorrelation33 /= (rolltimeH*rolltimeW);
dLocalCalm33 /= (rolltimeH*rolltimeW); dEnergy44 /= (rolltimeH*rolltimeW);
dEntropy44 /= (rolltimeH*rolltimeW);
dInertiaQuadrature44 /= (rolltimeH*rolltimeW);
dCorrelation44 /= (rolltimeH*rolltimeW);
dLocalCalm44 /= (rolltimeH*rolltimeW); pGLCMFVar.dAveEnergy = dEnergy/ ;
pGLCMFVar.dAveEntropy = dEntropy/;
pGLCMFVar.dAveInertiaQuadrature = dInertiaQuadrature/;
pGLCMFVar.dAveCorrelation = dCorrelation/;
pGLCMFVar.dAveLocalCalm = dLocalCalm/; pGLCMFVar.dVarEnergy=((dEnergy11-pGLCMFVar.dAveEnergy)*(dEnergy11-pGLCMFVar.dAveEnergy)
+(dEnergy22-pGLCMFVar.dAveEnergy)*(dEnergy22-pGLCMFVar.dAveEnergy)
+(dEnergy33-pGLCMFVar.dAveEnergy)*(dEnergy33-pGLCMFVar.dAveEnergy)
+(dEnergy44-pGLCMFVar.dAveEnergy)*(dEnergy44-pGLCMFVar.dAveEnergy))/;
pGLCMFVar.dVarEntropy=((dEntropy11-pGLCMFVar.dAveEntropy)*(dEntropy11-pGLCMFVar.dAveEntropy)
+(dEntropy22-pGLCMFVar.dAveEntropy)*(dEntropy22-pGLCMFVar.dAveEntropy)
+(dEntropy33-pGLCMFVar.dAveEntropy)*(dEntropy33-pGLCMFVar.dAveEntropy)
+(dEntropy44-pGLCMFVar.dAveEntropy)*(dEntropy44-pGLCMFVar.dAveEntropy))/;
pGLCMFVar.dVarInertiaQuadrature=((dInertiaQuadrature11-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature11-pGLCMFVar.dAveInertiaQuadrature)
+(dInertiaQuadrature22-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature22-pGLCMFVar.dAveInertiaQuadrature)
+(dInertiaQuadrature33-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature33-pGLCMFVar.dAveInertiaQuadrature)
+(dInertiaQuadrature44-pGLCMFVar.dAveInertiaQuadrature)*(dInertiaQuadrature44-pGLCMFVar.dAveInertiaQuadrature))/;
pGLCMFVar.dVarCorrelation=((dCorrelation11-pGLCMFVar.dAveCorrelation)*(dCorrelation11-pGLCMFVar.dAveCorrelation)
+(dCorrelation22-pGLCMFVar.dAveCorrelation)*(dCorrelation22-pGLCMFVar.dAveCorrelation)
+(dCorrelation33-pGLCMFVar.dAveCorrelation)*(dCorrelation33-pGLCMFVar.dAveCorrelation)
+(dCorrelation44-pGLCMFVar.dAveCorrelation)*(dCorrelation44-pGLCMFVar.dAveCorrelation))/;
pGLCMFVar.dVarLocalCalm=((dLocalCalm11-pGLCMFVar.dAveLocalCalm)*(dLocalCalm11-pGLCMFVar.dAveLocalCalm)
+(dLocalCalm22-pGLCMFVar.dAveLocalCalm)*(dLocalCalm22-pGLCMFVar.dAveLocalCalm)
+(dLocalCalm33-pGLCMFVar.dAveLocalCalm)*(dLocalCalm33-pGLCMFVar.dAveLocalCalm)
+(dLocalCalm44-pGLCMFVar.dAveLocalCalm)*(dLocalCalm44-pGLCMFVar.dAveLocalCalm))/; for(i=; i<FilterWindowWidth; i++)
{
free(arLocalImage[i]) ;
arLocalImage[i] = NULL;
}
free(arLocalImage);
arLocalImage = NULL; return pGLCMFVar;
}
说明:
参考了 《VisualC++数字图像模式识别技术详解》、《数字图像处理与机器视觉-VisualC++与Matlab实现》等书,此类为本文作者原创,可直接调用,转载/引用请注明出处。
-------------------------------------------------------------------------------------------------------------------------------
四 参考资料
提取共生矩阵特征 - wqvbjhc的专栏 - CSDN博客
基于灰度共生矩阵的纹理特征提取 - docin.com豆丁网
一个使用GLCM的例子.(修改了CvTexture的bug)
《VisualC++数字图像模式识别技术详解》
《数字图像处理与机器视觉-VisualC++与Matlab实现》
------------------------------------------------------------------------------------------------------------------------------
Author: SKySeraph
Email/GTalk: zgzhaobo@gmail.com QQ:452728574
From: http://www.cnblogs.com/skyseraph/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
-----------------------------------------------------------------------------------------------------------------------------