MySQL之InnoDB索引面试学习笔记

时间:2021-09-06 05:19:59

写在前面

  想要做好后台开发,终究是绕不过索引这一关的。先问自己一个问题,InnoDB为什么选择B+树作为默认索引结构。本文主要参考MySQL索引背后的数据结构及算法原理剖析Mysql的InnoDB索引

索引

  当数据量到达一定规模时,我们通常会对经常使用的字段建立索引,来加快数据的查询。首先需要强调的是索引的本质是数据结构,前辈们经过不断完善得到了几种复杂度较低并且能够降低磁盘IO的数据结构,这里要说的是B树与B+树,他们被广泛应用在文件系统与数据库系统中。

B-Tree

   B树逻辑上是一颗多叉树,3阶B树如下:

MySQL之InnoDB索引面试学习笔记

  m阶B树满足以下几个条件:

  • 非叶子节点最少有m/2颗子树(即B树的度为m/2)
  • 叶子节点在同一层,每个节点最多有m-1个升序排列的key(索引列)和m个指针,key与指针相互间隔

搜索二叉树的查询复杂度为O(log2N),而B树的复杂度为O(logm/2N),对于N=62*1000000000个节点,如果度为1024,则logM/2N <=4,可以说它是效率很高的数据结构。

B+树

  B+树是B树的变种,区别有三点:

  • 非叶子节点只存储key,不存储data;叶子节点存储所有key与data,不存储指针
  • 叶子节点增加了顺序访问指针
  • 每个节点最多有m个升序排列的key

MySQL之InnoDB索引面试学习笔记

  上述区别换来的优点包括:

  • 非子节点可以存放更多的key,具有更好的空间局部性,提高缓存命中率
  • 叶子节点相链便于区间查找,顺序查找替代B树的递归查找。

为什么选择B+树

  首先要意识到数据检索的时间主要耗费在磁盘IO(寻道时间、旋转时间)上,因此要尽量减少IO次数。对树形结构的数据来说,树的每一层代表需要一次磁盘IO查询,因此设计了“扁平”的B树与更扁的B+树。另外,由著名的局部性原理,访问的数据通常比较集中,磁盘每次IO时会预读数据,预读的长度为页(4k)的整数倍,B/B+树新建节点会申请一个页的空间,因此取一个节点只需要一次IO(非叶子节点可存储到内存中)。

MySQL之InnoDB索引面试学习笔记

索引创建过程

mysql创建索引是通过online create index,减少业务停写时间,创建索引期间业务能正常工作。

步骤:

  1. 等待当前所有事务执行结束;新事务更新数据会把新建索引记录到Row Log中
  2. 构建索引,从主表读出数据并排序。使用临时文件进行外部排序方式,单线程两路归并。
  3. 把增量数据从Row Log更新到索引表中

MySQL存储引擎

首先区分聚簇索引(按主键聚集)与非聚簇索引:

MySQL之InnoDB索引面试学习笔记

  • 二者使用B+树作为数据结构
  • 聚簇索引的data存于主键索引的叶子节点中,得到key同时得到data,非聚簇索引数据存于独立的地方,叶节点保存的是数据的地址
  • 聚簇索引的辅助键索引(非主键索引,例如employee表中对name建索引)叶节点存储主键而非数据(为了节省空间,缺陷是需要到主键索引中二次查询);非聚簇索引叶节点保存数据的地址。

  聚簇索引的优势在于找到主键同时得到data,省去二次磁盘IO;另外B+树在插入或删除节点时周围节点地址会发生变化,对非聚簇索引来说需要更新所有B+树的地址指针,增加开销。

InnoDB

  InnoDB使用聚簇索引(MyISAM使用非聚簇索引),其磁盘管理逻辑单位是Page(不同于上述内存中的页!),每个Page大小为16k,使用32位int标识,对应innoDB最大64TB的存储容量。

  每个Page包括头部、主体、尾部三部分:

MySQL之InnoDB索引面试学习笔记

  其中头部包括id与相邻Page指针(构成双向链表);

  主体即B+树节点的存储,其中包括很多Record(节点)包括四类:

  • 主索引非叶子节点:定位Page
  • 主索引叶子节点:包括key与该key对应的所有列(mysql表中的一行)
  • 辅助索引非叶子节点:定位Page
  • 辅助索引叶子节点:包括索引键值与主键值(key)

  

 主键选择

  因为数据存于主索引中,要求一个节点的各条数据记录按主键顺序存放,当一页达到装载因子(15/16)会自动开辟新的页。如果使用自增主键,每次插入新纪录都顺序添加到索引节点的后续位置,否则会节点中key会一直移动。

  最左匹配原则

  在联合索引中对a,b两个字段建立索引(a, b),在查询时只有包括a时才会查询索引。

MySQL之InnoDB索引面试学习笔记

  如上图(a, b)联合索引,在a相同时,b按顺序排列。在遇到范围查询时之后的字段会停止匹配。因为a是范围,b无序。