opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

时间:2022-02-24 05:21:19

ROI区域图像叠加&图像混合

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream> using namespace cv;
using namespace std; //-----------------------------------【全局函数声明部分】--------------------------------------
// 描述:全局函数声明
//-----------------------------------------------------------------------------------------------
bool ROI_AddImage();
bool LinearBlending();
bool ROI_LinearBlending();
void ShowHelpText(); //-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
system("color 6F"); ShowHelpText(); if (ROI_AddImage() && LinearBlending() && ROI_LinearBlending())
{
cout << "\n运行成功,得出了需要的图像" << endl;
} waitKey(0);
return 0;
} //-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{ printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION);
printf("\n\n ----------------------------------------------------------------------------\n");
} //----------------------------------【ROI_AddImage( )函数】----------------------------------
// 函数名:ROI_AddImage()
// 描述:利用感兴趣区域ROI实现图像叠加
//----------------------------------------------------------------------------------------------
bool ROI_AddImage()
{ // 【1】读入图像
Mat srcImage1 = imread("G:\\dota_pa.jpg");
Mat logoImage = imread("G:\\dota_logo.jpg");
if (!srcImage1.data) { printf("读取srcImage1错误~! \n"); return false; }
if (!logoImage.data) { printf("读取logoImage错误~! \n"); return false; } // 【2】定义一个Mat类型并给其设定ROI区域
Mat imageROI = srcImage1(Rect(200, 250, logoImage.cols, logoImage.rows)); // 【3】加载掩模(必须是灰度图)
Mat mask = imread("G:\\dota_logo.jpg", 0); //【4】将掩膜拷贝到ROI
logoImage.copyTo(imageROI, mask); // 【5】显示结果
namedWindow("<1>利用ROI实现图像叠加示例窗口");
imshow("<1>利用ROI实现图像叠加示例窗口", srcImage1); return true;
} //---------------------------------【LinearBlending()函数】-------------------------------------
// 函数名:LinearBlending()
// 描述:利用cv::addWeighted()函数实现图像线性混合
//--------------------------------------------------------------------------------------------
bool LinearBlending()
{
//【0】定义一些局部变量
double alphaValue = 0.5;
double betaValue;
Mat srcImage2, srcImage3, dstImage; // 【1】读取图像 ( 两幅图片需为同样的类型和尺寸 )
srcImage2 = imread("G:\\mogu.jpg");
srcImage3 = imread("G:\\rain.jpg"); if (!srcImage2.data) { printf("读取srcImage2错误! \n"); return false; }
if (!srcImage3.data) { printf("读取srcImage3错误! \n"); return false; } // 【2】进行图像混合加权操作
betaValue = (1.0 - alphaValue);
addWeighted(srcImage2, alphaValue, srcImage3, betaValue, 0.0, dstImage); // 【3】显示原图窗口
imshow("<2>线性混合示例窗口【原图】", srcImage2);
imshow("<3>线性混合示例窗口【效果图】", dstImage); return true; } //---------------------------------【ROI_LinearBlending()】-------------------------------------
// 函数名:ROI_LinearBlending()
// 描述:线性混合实现函数,指定区域线性图像混合.利用cv::addWeighted()函数结合定义
// 感兴趣区域ROI,实现自定义区域的线性混合
//--------------------------------------------------------------------------------------------
bool ROI_LinearBlending()
{ //【1】读取图像
Mat srcImage4 = imread("G:\\dota_pa.jpg", 1);
Mat logoImage = imread("G:\\dota_logo.jpg"); if (!srcImage4.data) { printf("读取srcImage4错误~! \n"); return false; }
if (!logoImage.data) { printf("读取logoImage错误~! \n"); return false; } //【2】定义一个Mat类型并给其设定ROI区域
Mat imageROI;
//方法一
imageROI = srcImage4(Rect(200, 250, logoImage.cols, logoImage.rows));
//方法二
//imageROI= srcImage4(Range(250,250+logoImage.rows),Range(200,200+logoImage.cols)); //【3】将logo加到原图上
addWeighted(imageROI, 0.5, logoImage, 0.3, 0., imageROI); //【4】显示结果
imshow("<4>区域线性图像混合示例窗口", srcImage4); return true;
}

1 感兴趣区域:ROI

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

线性混合操作 计算数组加权和:addWeighted()

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

分离颜色通道、多通道图像混合

通道分离:split()函数

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

通道合并:merge()函数

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)


//-----------------------------------【头文件包含部分】---------------------------------------
// 描述:包含程序所依赖的头文件
//------------------------------------------------------------------------------------------------
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream> //-----------------------------------【命名空间声明部分】---------------------------------------
// 描述:包含程序所使用的命名空间
//-------------------------------------------------------------------------------------------------
using namespace cv;
using namespace std; //-----------------------------------【全局函数声明部分】--------------------------------------
// 描述:全局函数声明
//-----------------------------------------------------------------------------------------------
bool MultiChannelBlending();
void ShowHelpText(); //-----------------------------------【main( )函数】------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main( )
{
system("color 9F"); ShowHelpText( ); if(MultiChannelBlending( ))
{
cout<<endl<<"\n运行成功,得出了需要的图像~! ";
} waitKey(0);
return 0;
} //-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{ printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION );
printf("\n\n ----------------------------------------------------------------------------\n");
} //-----------------------------【MultiChannelBlending( )函数】--------------------------------
// 描述:多通道混合的实现函数
//-----------------------------------------------------------------------------------------------
bool MultiChannelBlending()
{
//【0】定义相关变量
Mat srcImage;
Mat logoImage;
vector<Mat> channels;
Mat imageBlueChannel; //=================【蓝色通道部分】=================
// 描述:多通道混合-蓝色分量部分
//============================================ // 【1】读入图片
logoImage= imread("G:\\dota_logo.jpg",0);
srcImage= imread("G:\\dota_jugg.jpg"); if( !logoImage.data ) { printf("Oh,no,读取logoImage错误~! \n"); return false; }
if( !srcImage.data ) { printf("Oh,no,读取srcImage错误~! \n"); return false; } //【2】把一个3通道图像转换成3个单通道图像
split(srcImage,channels);//分离色彩通道 //【3】将原图的蓝色通道引用返回给imageBlueChannel,注意是引用,相当于两者等价,修改其中一个另一个跟着变
imageBlueChannel= channels.at(0);
//【4】将原图的蓝色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,将得到的混合结果存到imageBlueChannel中
addWeighted(imageBlueChannel(Rect(500,250,logoImage.cols,logoImage.rows)),1.0,
logoImage,0.5,0,imageBlueChannel(Rect(500,250,logoImage.cols,logoImage.rows))); //【5】将三个单通道重新合并成一个三通道
merge(channels,srcImage); //【6】显示效果图
namedWindow(" <1>游戏原画+logo蓝色通道");
imshow(" <1>游戏原画+logo蓝色通道",srcImage); //=================【绿色通道部分】=================
// 描述:多通道混合-绿色分量部分
//============================================ //【0】定义相关变量
Mat imageGreenChannel; //【1】重新读入图片
logoImage= imread("G:\\dota_logo.jpg",0);
srcImage= imread("G:\\dota_jugg.jpg"); if( !logoImage.data ) { printf("读取logoImage错误~! \n"); return false; }
if( !srcImage.data ) { printf("读取srcImage错误~! \n"); return false; } //【2】将一个三通道图像转换成三个单通道图像
split(srcImage,channels);//分离色彩通道 //【3】将原图的绿色通道的引用返回给imageBlueChannel,注意是引用,相当于两者等价,修改其中一个另一个跟着变
imageGreenChannel= channels.at(1);
//【4】将原图的绿色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,将得到的混合结果存到imageGreenChannel中
addWeighted(imageGreenChannel(Rect(500,250,logoImage.cols,logoImage.rows)),1.0,
logoImage,0.5,0.,imageGreenChannel(Rect(500,250,logoImage.cols,logoImage.rows))); //【5】将三个独立的单通道重新合并成一个三通道
merge(channels,srcImage); //【6】显示效果图
namedWindow("<2>游戏原画+logo绿色通道");
imshow("<2>游戏原画+logo绿色通道",srcImage); //=================【红色通道部分】=================
// 描述:多通道混合-红色分量部分
//============================================ //【0】定义相关变量
Mat imageRedChannel; //【1】重新读入图片
logoImage= imread("G:\\dota_logo.jpg",0);
srcImage= imread("G:\\dota_jugg.jpg"); if( !logoImage.data ) { printf("Oh,no,读取logoImage错误~! \n"); return false; }
if( !srcImage.data ) { printf("Oh,no,读取srcImage错误~! \n"); return false; } //【2】将一个三通道图像转换成三个单通道图像
split(srcImage,channels);//分离色彩通道 //【3】将原图的红色通道引用返回给imageBlueChannel,注意是引用,相当于两者等价,修改其中一个另一个跟着变
imageRedChannel= channels.at(2);
//【4】将原图的红色通道的(500,250)坐标处右下方的一块区域和logo图进行加权操作,将得到的混合结果存到imageRedChannel中
addWeighted(imageRedChannel(Rect(500,250,logoImage.cols,logoImage.rows)),1.0,
logoImage,0.5,0.,imageRedChannel(Rect(500,250,logoImage.cols,logoImage.rows))); //【5】将三个独立的单通道重新合并成一个三通道
merge(channels,srcImage); //【6】显示效果图
namedWindow("<3>游戏原画+logo红色通道 ");
imshow("<3>游戏原画+logo红色通道 ",srcImage); return true;
}

图像对比度,亮度值调整

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

opencv 3 core组件进阶(2 ROI区域图像叠加&图像混合;分离颜色通道、多通道图像混合;图像对比度,亮度值调整)

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream> //-----------------------------------【命名空间声明部分】---------------------------------------
// 描述:包含程序所使用的命名空间
//-----------------------------------------------------------------------------------------------
using namespace std;
using namespace cv; //-----------------------------------【全局函数声明部分】--------------------------------------
// 描述:全局函数声明
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *);
void ShowHelpText(); //-----------------------------------【全局变量声明部分】--------------------------------------
// 描述:全局变量声明
//-----------------------------------------------------------------------------------------------
int g_nContrastValue; //对比度值
int g_nBrightValue; //亮度值
Mat g_srcImage, g_dstImage;
//-----------------------------------【main( )函数】--------------------------------------------
// 描述:控制台应用程序的入口函数,我们的程序从这里开始
//-----------------------------------------------------------------------------------------------
int main()
{
//改变控制台前景色和背景色
system("color 2F"); ShowHelpText();
// 读入用户提供的图像
g_srcImage = imread("G:\\1.jpg");
if (!g_srcImage.data) { printf("读取g_srcImage图片错误~! \n"); return false; }
g_dstImage = Mat::zeros(g_srcImage.size(), g_srcImage.type()); //设定对比度和亮度的初值
g_nContrastValue = 80;
g_nBrightValue = 80; //创建窗口
namedWindow("【效果图窗口】", 1); //创建轨迹条
createTrackbar("对比度:", "【效果图窗口】", &g_nContrastValue, 300, ContrastAndBright);
createTrackbar("亮 度:", "【效果图窗口】", &g_nBrightValue, 200, ContrastAndBright); //调用回调函数
ContrastAndBright(g_nContrastValue, 0);
ContrastAndBright(g_nBrightValue, 0); //输出一些帮助信息
cout << endl << "\t运行成功,请调整滚动条观察图像效果\n\n"
<< "\t按下“q”键时,程序退出\n"; //按下“q”键时,程序退出
while (char(waitKey(1)) != 'q') {}
return 0;
} //-----------------------------------【ShowHelpText( )函数】----------------------------------
// 描述:输出一些帮助信息
//----------------------------------------------------------------------------------------------
void ShowHelpText()
{
//输出欢迎信息和OpenCV版本 printf("\n\n\t\t\t 当前使用的OpenCV版本为:" CV_VERSION);
printf("\n\n ----------------------------------------------------------------------------\n");
} //-----------------------------【ContrastAndBright( )函数】------------------------------------
// 描述:改变图像对比度和亮度值的回调函数
//-----------------------------------------------------------------------------------------------
static void ContrastAndBright(int, void *)
{ // 创建窗口
namedWindow("【原始图窗口】", 1); // 三个for循环,执行运算 g_dstImage(i,j) = a*g_srcImage(i,j) + b
for (int y = 0; y < g_srcImage.rows; y++)
{
for (int x = 0; x < g_srcImage.cols; x++)
{
for (int c = 0; c < 3; c++)
{
g_dstImage.at<Vec3b>(y, x)[c] = saturate_cast<uchar>((g_nContrastValue*0.01)*(g_srcImage.at<Vec3b>(y, x)[c]) + g_nBrightValue);
}
}
} // 显示图像
imshow("【原始图窗口】", g_srcImage);
imshow("【效果图窗口】", g_dstImage);
}