HDU 4869 Turn the pokers
题意:给定n个翻转扑克方式,每次方式相应能够选择当中xi张进行翻转。一共同拥有m张牌。问最后翻转之后的情况数
思路:对于每一些翻转,假设能确定终于正面向上张数的情况,那么全部的情况就是全部情况的C(m, 张数)之和。那么这个张数进行推理会发现,事实上会有一个上下界,每隔2个位置的数字就是能够的方案,由于在翻牌的时候,相应的肯定会有牌被翻转,而假设向上牌少翻一张,向下牌就要多翻一张。奇偶性是不变的,因此仅仅要每次输入张数,维护上下界,最后在去求和就可以
代码:
#include <cstdio>
#include <cstring> typedef long long ll;
const ll MOD = 1000000009;
const int N = 100005;
int n, m, num;
ll fac[N]; ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {x = 1; y = 0; return a;}
ll d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} ll inv(ll a, ll n) {
ll x, y;
exgcd(a, n, x, y);
return (x + n) % n;
} ll C(int n, int m) {
return fac[n] * inv(fac[m] * fac[n - m] % MOD, MOD) % MOD;
} int main() {
fac[0] = 1;
for (ll i = 1; i < N; i++)
fac[i] = fac[i - 1] * i % MOD;
while (~scanf("%d%d", &n, &m)) {
scanf("%d", &num);
int up = num;
int down = num;
for (int i = 1; i < n; i++) {
scanf("%d", &num);
int up2 = m - down;
int down2 = m - up;
if (num >= down && num <= up)
down = ((down&1)^(num&1));
else if (num < down) down = down - num;
else down = num - up; if (num >= down2 && num <= up2) {
up = m - ((up2&1)^(num&1));
}
else if (num < down2) {
up = m - (down2 - num);
}
else up = m - (num - up2);
}
ll ans = 0;
for (int i = down; i <= up; i += 2) {
ans = (ans + C(m, i)) % MOD;
}
printf("%lld\n", ans);
}
return 0;
}