题目链接:http://abc044.contest.atcoder.jp/tasks/arc060_a
Time limit : 2sec / Memory limit : 256MB
Score : 300 points
Problem Statement
Tak has N cards. On the i-th (1≤i≤N) card is written an integer xi. He is selecting one or more cards from these N cards, so that the average of the integers written on the selected cards is exactly A. In how many ways can he make his selection?
Constraints
- 1≤N≤50
- 1≤A≤50
- 1≤xi≤50
- N, A, xi are integers.
Partial Score
- 200 points will be awarded for passing the test set satisfying 1≤N≤16.
Input
The input is given from Standard Input in the following format:
N A
x1 x2 … xN
Output
Print the number of ways to select cards such that the average of the written integers is exactly A.
Sample Input 1
Copy
4 8
7 9 8 9
Sample Output 1
Copy
5
- The following are the 5 ways to select cards such that the average is 8:
- Select the 3-rd card.
- Select the 1-st and 2-nd cards.
- Select the 1-st and 4-th cards.
- Select the 1-st, 2-nd and 3-rd cards.
- Select the 1-st, 3-rd and 4-th cards.
Sample Input 2
Copy
3 8
6 6 9
Sample Output 2
Copy
0
Sample Input 3
Copy
8 5
3 6 2 8 7 6 5 9
Sample Output 3
Copy
19
Sample Input 4
Copy
33 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Sample Output 4
Copy
8589934591
- The answer may not fit into a 32-bit integer
题意:给定一串数字,问能够组成多少种不连续子串使得子串的平均数为某个数
题解:用动态规划,i表示相加的个数,j表示加起来后的值
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
#include <queue>
using namespace std;
#define lowbit(x) (x&(-x))
#define max(x,y) (x>y?x:y)
#define min(x,y) (x<y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.141592653589793238462
#define INF 0x3f3f3f3f3f
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;
}
bool cmp(int x,int y)
{
return x>y;
}
const int N=;
const int mod=1e9+;
ll dp[N][N*N];
int main()
{
int n,a;
cin>>n>>a;
dp[][]=;
for(int i=;i<=n;i++){
int x;
cin>>x;
for(int j=i-;j>=;j--)
for(int k=;k<=N*j;k++)
dp[j+][k+x]+=dp[j][k];
}
ll ans=;
for(int i=;i<=n;i++)
ans+=dp[i][i*a];
cout<<ans<<endl;
return ;
}