【九度OJ】题目1047:素数判定 解题报告

时间:2021-12-06 04:54:55

【九度OJ】题目1047:素数判定 解题报告

标签(空格分隔): 九度OJ


原题地址:http://ac.jobdu.com/problem.php?pid=1047

题目描述:

给定一个数n,要求判断其是否为素数(0,1,负数都是非素数)。

输入:

测试数据有多组,每组输入一个数n。

输出:

对于每组输入,若是素数则输出yes,否则输入no。

样例输入:

13

样例输出:

yes

Ways

用C++还是不能一遍A.

这个题是在太简单,大一经常做。就是从2到sqrt(2)枚举,看能不能整除,如果能整除就不是素数。

注意在判断n<=1的时候不能写break;如果写了程序也就运行停止了!

另外有个技巧,就是循环判断,宁愿多算一个数也不能出现错误。

#include <stdio.h>
#include <math.h> int main() {
int n;
while (scanf("%d", &n) != EOF) {
if (n <= 1) {
printf("no\n");
//break;//不能写
} else {
bool isPrime = true;
for (int i = 2; i <= (int) sqrt(n) + 1; i++) {
if (n % i == 0) {
isPrime = false;//被整除不是素数
break;
}
}
if (isPrime) {
printf("yes\n");
} else {
printf("no\n");
}
} }
return 0;
}

另外,是否想到BigInteger类!

简直是神器好么!直接可以判断一个数是否为素数。

这里要说明,这个判断对合数的判断是绝对正确的,对素数的判断不绝对正确,只是有很大可能性进行确认。

isProbablePrime(num)里面的参数代表判断素数的准确率为1/(2^num),num越大代表判断准确度越高,可以看出当num=10时这个题已经能AC了。

可能有人问为什么会出现这种不确定性的结果,原因是当一个数非常大的时候,判断其是否为素数的老方法为O(sqrt(n)),这个复杂度很高的,当一个数极大时,这个运算可能需要一天甚至更久才能给出结果。

所以,史上最伟大的业余数学家 费马 给出了近似判定公式,可以极大优化计算复杂度,但是缺点是有可能出现判错的结果。

具体见文章:聊聊如何检测素数

import java.util.*;
import java.math.*; public class Main{
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while(scanner.hasNext()){
if (scanner.nextBigInteger().isProbablePrime(10)) {
System.out.println("yes");
} else {
System.out.println("no");
}
}
}
}

Date

2017 年 3 月 7 日