二分查找算法

时间:2022-09-23 04:08:05
关于二分法查找,也经常称折半查找,思想就是“分而治之”,网上有很多资料,给出 *上的链接( https://zh.wikipedia.org/wiki/%E6%8A%98%E5%8D%8A%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95 http://www.codecodex.com/wiki/Binary_search ),本文不作赘述。下面给出二分查找的非递归和递归的算法。
#include<iostream>
using namespace std;
int search(int *, int, int);
int searchfdg(int *, int, int, int);
int search(int *arra, int key, int high) {
	int low = 0;
	while (low <= high)
	{
		int mid = (low + high) / 2;
		  if (arra[mid] == key) {
			return mid;
         }else if (arra[mid] > key) {
			high = mid - 1;
         }else
			low = mid + 1;
	}
	cout << "元素不存在!";
		return  -1;
}

int searchfdg(int *arra, int key,int low,int high) {
	
		if (low <= high)
		{
			int mid = (low + high) / 2;
			if (key == arra[mid]){
				return mid;
			}
			else if (key < arra[mid]) {
				return searchfdg(arra, key, low, mid - 1);
			}else if (key > arra[mid])
				low = mid + 1;
				return searchfdg(arra, key, mid+1,high);
		}
		else
			cout << "元素不存在!";
			return -1;
	}
int main() {
	int arra[] = {3,5,9,14,17,23,29,33,37 };
	int size = sizeof(arra) / sizeof(int);
	cout << "非递归查找的元素在数组中的位置是:" << endl;
	cout << search(arra, 33, size-1) << endl;
	cout << "递归查找的元素在数组中的位置是:" << endl;
	cout << searchfdg(arra, 33, 0,size-1) << endl; //注意此时的low和high的值

} 
运行结果:
二分查找算法