This is based on a question I answered here about how to use SAS to solve the following problem. [NOTE: There is a working SAS data step solution, but I was just trying to see how it would work in SQL.]
这是基于我在这里回答的有关如何使用SAS解决以下问题的问题。 [注意:有一个可用的SAS数据步骤解决方案,但我只是想看看它在SQL中是如何工作的。]
The problem (a little hard to describe) is to look at each transaction for a customer, look back 90 days from that transaction's date, count the total number of the customer's transactions in that 90-day window, save that number with the original transaction, count the number of distinct account managers handling the customer's transactions in that 90-day window, and save that number with the original transaction.
问题(有点难以描述)是查看客户的每笔交易,回顾该交易日期后90天,计算该90天窗口中客户交易的总数,用原始交易保存该数字,计算在该90天窗口中处理客户交易的不同客户经理的数量,并将该数字与原始交易一起保存。
Here is the data step to initialize a test transaction dataset and my SAS SQL solution:
以下是初始化测试事务数据集和SAS SQL解决方案的数据步骤:
data transaction;
length customerid $ 12 accountmanager $7 transactionid $ 12;
input CustomerID AccountManager TransactionID Transaction_Time datetime.;
format transaction_time datetime.;
datalines;
1111111111 FA001 TR2016001 08SEP16:11:19:25
1111111111 FA001 TR2016002 26OCT16:08:22:49
1111111111 FA002 TR2016003 04NOV16:08:05:36
1111111111 FA003 TR2016004 04NOV16:17:15:52
1111111111 FA004 TR2016005 25NOV16:13:04:16
1231231234 FA005 TR2016006 25AUG15:08:03:29
1231231234 FA005 TR2016007 16SEP15:08:24:24
1231231234 FA008 TR2016008 18SEP15:14:42:29
;;;;
run;
proc sql;
create table want as
select mgrs.*, trans.tranct
from
(select t3.customerid, t3.accountmanager, t3.transactionid, t3.transaction_time, count(*) as mgrct
from (select distinct t1.*, t2.accountmanager as m2
from transaction t1, transaction t2
where t1.customerid=t2.customerid
and
datepart(t1.transaction_time) >= datepart(t2.transaction_time)-90
and
t2.transaction_time <= t1.transaction_time) t3
group by t3.customerid, t3.accountmanager, t3.transactionid, t3.transaction_time) mgrs,
(select t4.customerid, t4.transactionid, count(*) as tranct
from transaction t4, transaction t5
where t4.customerid=t5.customerid
and
datepart(t4.transaction_time) >= datepart(t5.transaction_time)-90
and
t5.transaction_time <= t4.transaction_time
group by t4.customerid, t4.transactionid) trans
where mgrs.customerid=trans.customerid and mgrs.transactionid=trans.transactionid;
quit;
The result looks like this:
结果如下:
customerid accountmanager transactionid Transaction_Time mgrct tranct 1111111111 FA001 TR2016001 08SEP16:11:19:25 1 1 1111111111 FA001 TR2016002 26OCT16:08:22:49 1 2 1111111111 FA002 TR2016003 04NOV16:08:05:36 2 3 1111111111 FA003 TR2016004 04NOV16:17:15:52 3 4 1111111111 FA004 TR2016005 25NOV16:13:04:16 4 5 1231231234 FA005 TR2016006 25AUG15:08:03:29 1 1 1231231234 FA005 TR2016007 16SEP15:08:24:24 1 2 1231231234 FA008 TR2016008 18SEP15:14:42:29 2 3
I haven't used SQL for a long time, so I would like to know if there is a more elegant SQL solution. I thought it would be simpler, but actually the SAS data step code seems simpler than this SQL query.
我已经很久没有使用SQL了,所以我想知道是否有更优雅的SQL解决方案。我认为它会更简单,但实际上SAS数据步骤代码似乎比这个SQL查询更简单。
1 个解决方案
#1
3
I think you just need to join the table with itself.
我想你只需要自己加入这个桌子。
proc sql noprint ;
create table want as
select a.*
, count(distinct b.accountmanager) as mgrct
, count(*) as tranct
from transaction a
left join transaction b
on a.customerid = b.customerid
and b.transaction_time <= a.transaction_time
and datepart(a.transaction_time)-datepart(b.transaction_time)
between 0 and 90
group by 1,2,3,4
;
quit;
Results
结果
1111111111 FA001 TR2016001 08SEP16:11:19:25 1 1
1111111111 FA001 TR2016002 26OCT16:08:22:49 1 2
1111111111 FA002 TR2016003 04NOV16:08:05:36 2 3
1111111111 FA003 TR2016004 04NOV16:17:15:52 3 4
1111111111 FA004 TR2016005 25NOV16:13:04:16 4 5
1231231234 FA005 TR2016006 25AUG15:08:03:29 1 1
1231231234 FA005 TR2016007 16SEP15:08:24:24 1 2
1231231234 FA008 TR2016008 18SEP15:14:42:29 2 3
#1
3
I think you just need to join the table with itself.
我想你只需要自己加入这个桌子。
proc sql noprint ;
create table want as
select a.*
, count(distinct b.accountmanager) as mgrct
, count(*) as tranct
from transaction a
left join transaction b
on a.customerid = b.customerid
and b.transaction_time <= a.transaction_time
and datepart(a.transaction_time)-datepart(b.transaction_time)
between 0 and 90
group by 1,2,3,4
;
quit;
Results
结果
1111111111 FA001 TR2016001 08SEP16:11:19:25 1 1
1111111111 FA001 TR2016002 26OCT16:08:22:49 1 2
1111111111 FA002 TR2016003 04NOV16:08:05:36 2 3
1111111111 FA003 TR2016004 04NOV16:17:15:52 3 4
1111111111 FA004 TR2016005 25NOV16:13:04:16 4 5
1231231234 FA005 TR2016006 25AUG15:08:03:29 1 1
1231231234 FA005 TR2016007 16SEP15:08:24:24 1 2
1231231234 FA008 TR2016008 18SEP15:14:42:29 2 3