1. 练习:家谱
题目:
# Single Gold Star
# Family Trees
# In the lecture, we showed a recursive definition for your ancestors. For this
# question, your goal is to define a procedure that finds someone's ancestors,
# given a Dictionary that provides the parent relationships.
# Here's an example of an input Dictionary:
ada_family = { 'Judith Blunt-Lytton': ['Anne Isabella Blunt', 'Wilfrid Scawen Blunt'],
'Ada King-Milbanke': ['Ralph King-Milbanke', 'Fanny Heriot'],
'Ralph King-Milbanke': ['Augusta Ada King', 'William King-Noel'],
'Anne Isabella Blunt': ['Augusta Ada King', 'William King-Noel'],
'Byron King-Noel': ['Augusta Ada King', 'William King-Noel'],
'Augusta Ada King': ['Anne Isabella Milbanke', 'George Gordon Byron'],
'George Gordon Byron': ['Catherine Gordon', 'Captain John Byron'],
'John Byron': ['Vice-Admiral John Byron', 'Sophia Trevannion'] }
# Define a procedure, ancestors(genealogy, person), that takes as its first input
# a Dictionary in the form given above, and as its second input the name of a
# person. It should return a list giving all the known ancestors of the input
# person (this should be the empty list if there are none). The order of the list
# does not matter and duplicates will be ignored.
def ancestors(genealogy, person):
# Here are some examples:
#print ancestors(ada_family, 'Augusta Ada King')
#>>> ['Anne Isabella Milbanke', 'George Gordon Byron',
# 'Catherine Gordon','Captain John Byron']
#print ancestors(ada_family, 'Judith Blunt-Lytton')
#>>> ['Anne Isabella Blunt', 'Wilfrid Scawen Blunt', 'Augusta Ada King',
# 'William King-Noel', 'Anne Isabella Milbanke', 'George Gordon Byron',
# 'Catherine Gordon', 'Captain John Byron']
#print ancestors(ada_family, 'Dave')
#>>> []
Peter 的答案:
def ancestors(genealogy, person):
if person in genealogy:
parents = genealogy[person]
result = parents
for parent in parents:
result = result + ancestors(genealogy, parent)
return result
return []
2. 练习:Khayyam 三角
(这个题我不想做,类似于杨辉三角。。。)
3. 练习:只有小小幸运
(暂时不想做,题目先贴上来。。。)
题目:
# Triple Gold Star
# Only A Little Lucky
# The Feeling Lucky question (from the regular homework) assumed it was enough
# to find the best-ranked page for a given query. For most queries, though, we
# don't just want the best page (according to the page ranking algorithm), we
# want a list of many pages that match the query, ordered from the most likely
# to be useful to the least likely.
# Your goal for this question is to define a procedure, ordered_search(index,
# ranks, keyword), that takes the same inputs as lucky_search from Question 5,
# but returns an ordered list of all the URLs that match the query.
# To order the pages, use the quicksort algorithm, invented by Sir Tony Hoare in
# 1959. Quicksort provides a way to sort any list of data, using an expected
# number of comparisons that scales as n log n where n is the number of elements
# in the list.
# The idea of quicksort is quite simple:
# If the list has zero or one elements, it is already sorted.
# Otherwise, pick a pivot element, and split the list into two partitions: one
# contains all the elements equal to or lower than the value of the pivot
# element, and the other contains all the elements that are greater than the
# pivot element. Recursively sort each of the sub-lists, and then return the
# result of concatenating the sorted left sub-list, the pivot element, and the
# sorted right sub-list.
# For simplicity, use the first element in the list as your pivot element (this
# is not usually a good choice, since it means if the input list is already
# nearly sorted, the actual work will be much worse than expected).
def ordered_search(index, ranks, keyword):
cache = {
'http://udacity.com/cs101x/urank/index.html': """<html> <body> <h1>Dave's Cooking Algorithms</h1> <p> Here are my favorite recipies: <ul> <li> <a href="http://udacity.com/cs101x/urank/hummus.html">Hummus Recipe</a> <li> <a href="http://udacity.com/cs101x/urank/arsenic.html">World's Best Hummus</a> <li> <a href="http://udacity.com/cs101x/urank/kathleen.html">Kathleen's Hummus Recipe</a> </ul> For more expert opinions, check out the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a> and <a href="http://udacity.com/cs101x/urank/zinc.html">Zinc Chef</a>. </body> </html> """,
'http://udacity.com/cs101x/urank/zinc.html': """<html> <body> <h1>The Zinc Chef</h1> <p> I learned everything I know from <a href="http://udacity.com/cs101x/urank/nickel.html">the Nickel Chef</a>. </p> <p> For great hummus, try <a href="http://udacity.com/cs101x/urank/arsenic.html">this recipe</a>. </body> </html> """,
'http://udacity.com/cs101x/urank/nickel.html': """<html> <body> <h1>The Nickel Chef</h1> <p> This is the <a href="http://udacity.com/cs101x/urank/kathleen.html"> best Hummus recipe! </a> </body> </html> """,
'http://udacity.com/cs101x/urank/kathleen.html': """<html> <body> <h1> Kathleen's Hummus Recipe </h1> <p> <ol> <li> Open a can of garbonzo beans. <li> Crush them in a blender. <li> Add 3 tablesppons of tahini sauce. <li> Squeeze in one lemon. <li> Add salt, pepper, and buttercream frosting to taste. </ol> </body> </html> """,
'http://udacity.com/cs101x/urank/arsenic.html': """<html> <body> <h1> The Arsenic Chef's World Famous Hummus Recipe </h1> <p> <ol> <li> Kidnap the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a>. <li> Force her to make hummus for you. </ol> </body> </html> """,
'http://udacity.com/cs101x/urank/hummus.html': """<html> <body> <h1> Hummus Recipe </h1> <p> <ol> <li> Go to the store and buy a container of hummus. <li> Open it. </ol> </body> </html> """,
}
def get_page(url):
if url in cache:
return cache[url]
return ""
def get_next_target(page):
start_link = page.find('<a href=')
if start_link == -1:
return None, 0
start_quote = page.find('"', start_link)
end_quote = page.find('"', start_quote + 1)
url = page[start_quote + 1:end_quote]
return url, end_quote
def get_all_links(page):
links = []
while True:
url, endpos = get_next_target(page)
if url:
links.append(url)
page = page[endpos:]
else:
break
return links
def union(a, b):
for e in b:
if e not in a:
a.append(e)
def add_page_to_index(index, url, content):
words = content.split()
for word in words:
add_to_index(index, word, url)
def add_to_index(index, keyword, url):
if keyword in index:
index[keyword].append(url)
else:
index[keyword] = [url]
def lookup(index, keyword):
if keyword in index:
return index[keyword]
else:
return None
def crawl_web(seed): # returns index, graph of inlinks
tocrawl = [seed]
crawled = []
graph = {} # <url>, [list of pages it links to]
index = {}
while tocrawl:
page = tocrawl.pop()
if page not in crawled:
content = get_page(page)
add_page_to_index(index, page, content)
outlinks = get_all_links(content)
graph[page] = outlinks
union(tocrawl, outlinks)
crawled.append(page)
return index, graph
def compute_ranks(graph):
d = 0.8 # damping factor
numloops = 10
ranks = {}
npages = len(graph)
for page in graph:
ranks[page] = 1.0 / npages
for i in range(0, numloops):
newranks = {}
for page in graph:
newrank = (1 - d) / npages
for node in graph:
if page in graph[node]:
newrank = newrank + d * (ranks[node] / len(graph[node]))
newranks[page] = newrank
ranks = newranks
return ranks
# Here are some example showing what ordered_search should do:
# Observe that the result list is sorted so the highest-ranking site is at the
# beginning of the list.
# Note: the intent of this question is for students to write their own sorting
# code, not to use the built-in sort procedure.
index, graph = crawl_web('http://udacity.com/cs101x/urank/index.html')
ranks = compute_ranks(graph)
#print ordered_search(index, ranks, 'Hummus')
#>>> ['http://udacity.com/cs101x/urank/kathleen.html',
# 'http://udacity.com/cs101x/urank/nickel.html',
# 'http://udacity.com/cs101x/urank/arsenic.html',
# 'http://udacity.com/cs101x/urank/hummus.html',
# 'http://udacity.com/cs101x/urank/index.html']
#print ordered_search(index, ranks, 'the')
#>>> ['http://udacity.com/cs101x/urank/nickel.html',
# 'http://udacity.com/cs101x/urank/arsenic.html',
# 'http://udacity.com/cs101x/urank/hummus.html',
# 'http://udacity.com/cs101x/urank/index.html']
#print ordered_search(index, ranks, 'babaganoush')
#>>> None