基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

时间:2022-06-26 03:24:35

PDF version

PDF & CDF

The probability density function of the uniform distribution is $$f(x; \alpha, \beta) = \begin{cases}{1\over\beta-\alpha} & \mbox{if}\ \alpha < x < \beta\\ 0 & \mbox{otherwise} \end{cases} $$ The cumulative distribution function of the uniform distribution is $$F(x) = \begin{cases}0 & x\leq\alpha \\ {x-\alpha\over \beta-\alpha} & \alpha < x < \beta\\ 1 & x \geq \beta \end{cases}$$

Proof:

$$ \begin{align*} \int_{-\infty}^{\infty}f(x; \alpha, \beta)\ dx &= \int_{\alpha}^{\beta}{1\over\beta-\alpha}\ dx\\ &= {x\over\beta-\alpha}\Big|_{\alpha}^{\beta}\\ &= {\beta\over\beta-\alpha} - {\alpha\over\beta-\alpha}\\ &= 1 \end{align*} $$ And $$ \begin{align*} F(x; \alpha, \beta) &= \int_{-\infty}^{x}f(x; \alpha, \beta)\ dx\\ &= \int_{-\infty}^{x}{1\over\beta-\alpha}\ dx\\ &= {x\over\beta-\alpha}\Big|_{\alpha}^{x}\\ &= {x - \alpha\over\beta-\alpha} \end{align*} $$

Mean

The expected value is $$\mu = E[X] = {\beta + \alpha \over 2}$$

Proof:

$$ \begin{align*} E[X] &= \int_{-\infty}^{\infty}xf(x; \alpha, \beta)\ dx\\ &= \int_{\alpha}^{\beta}{x\over\beta-\alpha}\ dx\\ &= {x^2\over2(\beta - \alpha)}\Big|_{\alpha}^{\beta}\\ &= {\beta^2-\alpha^2\over2(\beta-\alpha)}\\ &= {\beta + \alpha \over 2} \end{align*} $$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = {(\beta - \alpha)^2 \over 12}$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= \int_{-\infty}^{\infty}x^2f(x;\alpha, \beta)\ dx\\ &= \int_{\alpha}^{\beta}{x^2\over\beta-\alpha}\ dx\\ &= {x^3\over 3(\beta - \alpha)}\Big|_{\alpha}^{\beta}\\ &= {\beta^3 - \alpha^3\over 3(\beta - \alpha)}\\ &= {\beta^2 + \alpha\beta + \alpha^2\over 3} \end{align*} $$ Hence $$ \begin{align*} \mbox{Var}(X) &= E\left[X^2\right] - E[X]^2\\ &= {\beta^2 + \alpha\beta + \alpha^2\over 3} - {\alpha^2+2\alpha\beta +\beta^2 \over 4}\\ &= {\beta^2 + \alpha^2 -2\alpha\beta \over 12}\\ &= {(\beta - \alpha) ^2 \over 12} \end{align*} $$

Examples

1. If $X$ is uniformly distributed over $(0, 10)$, calculate the probability that (a) $X < 3$, (b) $X > 6$, (c) $3 < X < 8$.  

Solution:

The uniform density function is $f(x) = {1\over 10}$, for $x\in (0, 10)$.

(a) $$P(X < 3) = \int_{0}^{3}{1\over10}\ dx = {3\over10}$$(b) $$P(X > 6) = \int_{6}^{10}{1\over10}\ dx = {4\over10} = {2\over5}$$ (c) $$P(3 < X < 8) = \int_{3}^{8}{1\over10}\ dx = {5\over10} = {1\over2}$$

2. Buses arrives at a specified stop at 15-minute interval starting at 7 A.M. That is, they arrive at 7, 7:15, 7:30, 7:45, and so on. If a passenger arrives at the stop at a time that is uniformly distributed between 7 and 7:30, find the probability that he waits (a) less than 5 minutes for a bus; (b) more than 10 minutes for a bus.

Solution:

Let $X$ be the number of minutes past 7 that the passenger arrives at the stop. The uniform density function is $f(x) = {1\over 30}$, for $x\in (0, 30)$.

(a) The passenger would have to wait less than 5 minutes if he arrives between 7:10 and 7:15 or between 7:25 and 7:30. $$P(10 < X < 15) + P(25 < X < 30) = \int_{10}^{15}{1\over30}\ dx + \int_{25}^{30}{1\over30}\ dx = {1\over3}$$ (b) The passenger would have to wait more than 10 minutes if he arrives between 7 and 7:05 or between 7:15 and 7:20. $$P(0 < X < 5) + P(15 < X < 20) = \int_{0}^{5}{1\over30}\ dx + \int_{15}^{20}{1\over30}\ dx = {1\over3}$$

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 5. Pearson. ISBN: 978-0-13-603313-4.

基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8&colon; Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 6&colon; Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  3. 基本概率分布Basic Concept of Probability Distributions 5&colon; Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  4. 基本概率分布Basic Concept of Probability Distributions 3&colon; Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  5. 基本概率分布Basic Concept of Probability Distributions 2&colon; Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  6. 基本概率分布Basic Concept of Probability Distributions 1&colon; Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4&colon; Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2&period; Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. Query Designer:Hierarchy层级显示

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  2. 关于H&period;264 x264 h264 AVC1

    1. H.264是MPEG4的第十部分,是一个标准.对头,国际上两个视频专家组(VCEG和MPEG)合作提出的标准,两个专家组各有各的叫法,所以既叫H.264,也叫AVC. 2.x264是一个编码器, ...

  3. PHP中Get&lpar;&rpar;和Post&lpar;&rpar;用法详解

    作为一个计算机系统,输入输出设备作为非核心设备却是不可或缺的,硬件如此,软件亦是如此.试想一台功能强劲的计算机,如果没有输入输出设备,它与一块只能耗电并且发出嗡嗡噪音的废铁有何不同.应用程序的道理也是 ...

  4. C语言-06数据类型-05 总结

    一.基本数据类型1.int1> long int.long:8个字节 %ld2> short int.short:2个字节 %d %i3> unsigned int.unsigned ...

  5. php实现加好友功能

    思路: 1用户发送好友申请之后 把申请储存到申请数据表中,状态为 未验证 2 当用户登录时,查询申请表中是否有uid和被申请人id相同的,如果同意,更改状态,并把数据插入到对应的好友数据表否则,删除申 ...

  6. seo步骤

    1. 关键词.找trends主词.去渣渣.(扩展).(去重tool sort) .打乱 :https://adwords.google.com/https://www.google.com/trend ...

  7. 9&period;QT-标准对话框

    Qt提供的可复用的标准对话框,全部继承自QDialog类,如下图所示: QMessageBox:信息对话框,用于显示信息.询问问题等: QFileDialog:文件对话框 QColorDialog:颜 ...

  8. 167&period; Two Sum II - Input array is sorted &lpar;Array&rpar;

    Given an array of integers that is already sorted in ascending order, find two numbers such that the ...

  9. 5O - 产生冠军

    有一群人,打乒乓球比赛,两两捉对撕杀,每两个人之间最多打一场比赛. 球赛的规则如下: 如果A打败了B,B又打败了C,而A与C之间没有进行过比赛,那么就认定,A一定能打败C. 如果A打败了B,B又打败了 ...

  10. &lbrack;转&rsqb;Windows Server 2008 对 CPU 及 RAM 的支持规格

    Windows Server 2008 对 CPU 的支援: 在看到下表时,请注意其数字所指的是:主板上的实体 CPU的个数,也就是几个 Sockets 举例来说,机器上安装 2 个 4 核心的 CP ...