Kth Largest Element in an Array - LeetCode

时间:2023-03-08 18:39:26
Kth Largest Element in an Array - LeetCode

examination questions

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

For example,
Given [3,2,1,5,6,4] and k = 2, return 5.

Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.

Please use the following function to solve the problem:

int findKthLargest(int* nums, int numsSize, int k) {

}


解法1:选择排序

解题代码

int findKthLargest(int* nums, int numsSize, int k) {

    int temp;
for (int i = ; i < numsSize-; i++){
for (int j = i+; j < numsSize; j++){
if (nums[i]> nums[j]){
temp = nums[j];
nums[j] = nums[i];
nums[i] = temp;
}
}
}
return nums[numsSize - k]; }

LeetCode判断结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABIoAAAChCAIAAAAnV8NEAAAVnklEQVR4nO3dz2scV4IH8P2f6tTIwujiIQkZsAlr6MwhhsDg5GAWG1tJJgoxOyRgHwKaMWFjHOEFs8FjsNebgYnAQXiGJQbHDGIChmTksBh80E2XvojeQ1V3v/rVVdVqu5+jz4cc0t2vXr36IXhfv1ev/mUIAABABP5l0Q0AAABgOBTPAAAAIiGeAQAAREE8AwAAiIJ4RpW9vb1FNwEAAA6bWeLZ3vbd9fdPHT+23EuSJEmSpZVX+qcvXb//46w9+jvnkiRJ3lj/+4zbt/H39TeSJEnO3XlJ6m2z05Le8rHjp95fv7t9kGy1t33zgxNLMx1Q8UK+iAsLAAC/GF3j2eDhlTeXKqNBkiQrb197OJihEeLZbDutt/Tm5a2nM1aeXg3xDAAAXrRu8Wz369WVNIddvvvg590siu09275/ffXXvSRJkpXVr3c7N0IvvqM0npVO2GD35+371z84sZQkSdI7uT5TVj5IPKuuyoUFAIBWOsWz3RunkyRJ3visqt8/+OunryVJkvzmi8ddG6EX31FNPMsMntw6tzL7GRXPAABgMTrFs4aJfKWf68rXzoEb/HDr4qlXl5IkSZZW+meLD1FNyj25t/7O68u9JEl6y6+/s55O5Ct+e+9JkCIr2vL0u+sXT72ePUG3tHL81MWbpYe2GstUH+Pe9s2Lp46vLNVXPd5u8MOfL7+TFe0tv37q4q0fGge9psez4XD49NaZo0mSHP1oM//93vbd9bP97KnBcrvSExwIdjF48r/XL53u5544PPtF7hy3mNw4+OHP62f72YnpLR8rVQEAAIdXp3i2c+2tJEmS136/1W7piW7x7PiZcyd7hXjQO7Z652lxu9+vp4NDQbGTVx5WPBS38tHmoK4tT+8UK0n390EwObNNmfIxDh5ee7tis8KTedl2b5wsHXPSe+tawwBkYzwbDjc/Opokya8+/evkq6d3Vo+VdpZrV208q3/kcOVc+QLVxbPBw/Xy0SbJ0pv/YXgNAABmffYsWTpx+tLVzcnjZ9W6xbM0Kqx/8+PecDjc+/Gb9TTkHD13Z7dYrnfy47uPdgfD4d6PN9MEdfTo0WTpzcvfPE6//e+P0kfhTt/YrW7Ld5dfS5Kkd/LTdHfDwe6j6+8WZgS2KVM6xtEcz96xM9cfPNsbDod7zx7cHD2ZN8mL49U9esfOXL0/OuZP0/hSGvWqPLFT49ng1pkkSZK3ru2MtrlyspckydKJD26m7RrsPr5/9cyxXr5dlZMb0zORrLybHVLuoF67/F1+07p4tvvVu720lkfpfTM+4N65O0bQAACg+8qN136bG4JZWnmlf/rj9T/df1yOah3jWXExi8HDz95IkuBptlG50zeCVQmzB+LCGDccDgd3zvWScPQo35Z/XDmZJEly5la4v6ymUaJpU6Z0jFkEOXrmVn7hxGy2Ye/dr3Zz2xUf1cu+PnnlH8WTWS41/ZmudPhsPPz1l98dTaoeG3x643QvbFdVPPvrp79KkuTo7/6S3zarMyg6PZ59vdpLkuT4Zw/DSrK6G/IoAAAcBrO892yw++ju+vvjJ7ImSe3Vd774Lpz22C2eVQyhZLMpR2Eoi2f5wJR18IvfFvdd+JxGhWTl7cuVwbJ1mep6c3MK8wVHzazLYa1W02gTz/Jl0rA2SZUT2TDb5PS1XxqkcEhN8SzLu71fr17dHI3CAQAAY7PEs4m9Z/98sPmf6x+fHi32kH9YrFs8qxoxSqPXKO1kz6jlh1+yvVR/WxvPCo9BLa30T1+6XghhbcpUj8pVZpv8Ubc9N5XaxLM0KGZlsnZNUbwalYcw2P35n9v3/+fWrauX3pusElK/FEjhc/5Zvt7y66feX78rqAEAQOZg8SwweHIve1hs8ixSt3hWFQjyNVRHl+qs0hDPhtnqiq8WFrxYOnHxL8G0xOYy+XqnrW35YuNZNgsze/iu8T3WDVdj8OTe+jvF81C36ZSVGwdP7n1x9l8Lw669Y7+d7XXmAADwy9IhnpWmspVkkWA8DDav0bNRyfnGs9Rg9/H9P4Xjf0nv5JXS657ry0Q6epY9FzYad2x4JUJFC3JvIBiPei2tvNI//d577126emvzwc9/S58N7BDPMnvPHmxevfRvwfzYmV5nDgAAvyxdRs/S55fCVSSKCt3xmlAwert1oRdfsTzE4y9+kyST9RefRzwLjJeBnLIwR6lM62fPstUPC8+ePad4li74EQxk1rerpBTP0r31Tn72XWEaYnpDzBDPJga7f/ssXbxx9evmpgEAwC9al3g22PxoJUkKr7oKZJlgErOyHFYIBY+vvdWr6sWXljsc7W+8oMX84lmaVoIl4bM9pstkpNGrTZmuKzdOjuU5xrPBk1vnVpL8+9OyduUXvRwOxy8CCJZlLMWzmiaNDqltPEtHFsvp/uFnx8UzAAAYdn32bDzLbenE2fW749ee7T3bvn/9gxNLSSETjEaMxq8O2/vx/tUzx3q9Xq+iF58kSe/Xqzcf7Q6Gw8Huo4p3hc0vnmVz/3rHzlwfHcXeswf5t5q1KXPg957NNZ7tPfvng82rowuRf03B6C0Fycrb6+nb4YZ7zx7c/ff0bdNhVWkLfvXxvdFYWemtZ3vPHtzM9tJl9CwbC1168/I328+yN8k9zt58ln8tAgAAHEqd33v2w40zxwoL6k8svXl5Kzc6k1+rL8liw63P8uki68WfWz1ZrHnpzSsPiy9Mns/kxoqWjZo33mObMuWYNXh47e2qzVbeDhfAmEM8m6J0IYbD4eCHG+9WHk6+YbnK05HQyvPQO3bmxtVz+eHShsmNhaUwgxbUjMcCAMChcoD3nh0fLaye9JaPHT/1/vrd7Yol0gdP7n1xNltTY+nVUxdvbu+VAtW4Fz/44dYHo7Ir/bNf3HuSW4Zkzs+e7W3fvDg5it7y66feL+6xuUx1zEo3y1YSWVo5nh73tPZNP8aCuni2tPJK//Sl6/d/rFurfm/77vrZ8Yr4lQ0bDgcPr72TLdqx9M5//d9wmK3cODme/tn0YmcDjOMJoM3PnqW3wyujNVaWVvqnL5VbAAAAh9LcFtYHAADgIMQzAACAKIhnAAAAURDPAAAAoiCeAQAAREE8AwAAiIJ4BgAAEAXxDAAAIAriGQAAQBTEMwAAgCiIZwAAAFEQzwAAAKIgngEAAERBPAMAAIiCeAYAABAF8QwAACAK4hkAAEAUxDMAAIAoiGcAAABREM8AAACiIJ4BAABEQTwDAACIgngGAAAQBfEMAAAgCuIZAABAFMQzAACAKIhnAAAAURDPAAAAoiCeAQAAREE8AwAAiEKHePYEAACAA5tPPGtfGAAAgDLxDAAAIAriGQAAQBTEMwAAgCiIZwAAAFEQzwAAAKIgngEAAERBPAMAAIiCeAYAABAF8QwAACAK4hkAAEAUxDMAAIAoiGcAABCvfaI3x8stngEAQLwWHT1oNsfLLZ4BAEC8Fh09aDbHyy2eAQBAvBYdPWg2x8stngEAQLwWHT1oNsfLLZ4BAEC8Fh09aDbHyy2eAQBAvBYdPWg2x8stngEAQLwWHT1oNsfLLZ4BAEC8Fh09aDbHyy2eAQBAvBYdPWg2x8stngEAQLwWHT1oNsfLLZ4BAEC8Fh09aDbHyy2eAQBAvBYdPWa1uXrk/PKFzUU3Y39/f3//9ufL/a++n3HjFgcyx8stnnW2s7PzgjcEAODQmjFULNj3f/xk+cj55SOf3150S/b3929fOC+ezc/WWjKytjUcDofDnY1+UpL9Vt62v7Eztzp3NvqV9TWaecNfrq21mosGAMDEjKFif/+nn36aS5lZbK4eOb/c/6R/5Hz/j9vPZQ9diGfzE+SoSWKqiFLV0ac6FB2gTvFsfsQzAIAWpmeHbz8Muq8ffjv6+qcv+0n/y5+mbtqmzIxuf7585Pzq7fpcdPvz5SPns/8KBab89OirfuVPj77qHzm/ens8ZBeO2m2ujjc5cn71dlNV+/v7+0E9/a++F89CaZJKc00WoIo9+roBstEWpQQwc51BgisPuQXFS9+WN6yqNdxhPiyON6reX9tmlM9Df2NrXChoWZe9d2pSEI37GxviGQBAsymp4NsPi5Fs9HGh8Wz7D/1R5hnltFAQoooBqdtP4wyWxrMLn1f9WhHPplWVDrWFP134XDwbSzv5o/791lo5aUwJZzXjMweqMxwEyw2ITT6EO538f93o2bhEWCDX7q21UURqUXNTM4q7zgfN9P+77L1Tk0rHKJ4BADSqDwXffliIV1lc++nL8T+Up2kt+GL0XaFMPugFn4Jyk32Vdpzz6KtgTmM6yzEcnkrz0id/eJR9TsPS6u1uP6XBL9vLaChsPJEyjVi5j5M2tKmqNPgmnpWEg16572q7+FOj22x1BgGjmHl2NvrJ2lZdFqqJZ20m+FVmodoapjdjypY1G3Tbe5cmmdwIANBCfSgIh8sqfholqFz0+vbDXGirLDP5FH6dL1Lv9oXcYNT3f/ykNgsVt2z4qTAKNwldaabKJahgBK8Qz6ZXVf61ovKSOV7ulySeZXPiKoa56nv41VMbD15nacLiRH9jJ/ylMF+werrk1LG//ATDipo7NqNQf3E6YvC51d47Nal4sKPUBgDAFNNiQfjoWW48q37i4iRldYxnLeUmEwZTBEfx5vbnubQWqv+pajpiMCkxN143qixIiWE8m15VMUyOj0g8mxh194s5Jv2+voM/bXRm1jrz8Wzq0Nwo30wrPmVMbdK40nGENXdsRuGXynjWYe+dmiSeAQDMoFUoGue02mfPwjVEWsezYG5ju5TWkKP2xbMmscezUY6qW1KjPprUT22cvc5pkxunl+8yubGQm6bPluzWjCn7Hn3stPdOTTK5EQCguzapKDMJXMXoNRld6zR6Fn5RGqGrkJtSOBHOWpx9cmNNqNufYXJjfVUmN05XWgM/vxJFq2mI86uzvDTIZBfjNBimjubBtvx6GuW1ObIo2VBz62aUz0NWZhJmO+29U5Ny000tDQIA0EptJqiYeTj+KohehXU8Zopn+8Xy1WrzVbhASPXKHMsXNlv8FL7kOqhztDTIOFZVLA1SXO2jpqpiGywNklORpPJr2tcOdNU/eDZ7nZMiVe+ynmxWfmyrtGG5xtxv+bdmTzJQZc2dmlE4EWtra6Xtuu29U5NyrxEIFtYvjNgBADBWHwp++rKfG9AKlgrJx7Nx1srmKpZH2IqL8lc8e9YinV0oxJ6JYA3GyumFWRzq+NMoj6WTG/v5AsEg3nit/PoGTKJd8VcL6/NimFwIAPASmBYLCq+lLka1IGRlPvy2/GBZlr/Gpfpffvtlv/Rtkl/+sRzUpk8CLPwavnu6kOja/hQMso2ePZskq0Izxi+hrm5Aaa7j+FevpeaFEc8AAF4C02IB+/v71UuDvFBzvNzi2aElngEAvAQWljleHuJZh1oAAICZLSxzvDzEsw61AAAAM1tY5nh5iGcdagEAAGa2sMxBa3O83OIZAADEa9HRg2ZzvNziGQAAxGvR0YNmc7zc4hkAAMRr0dGDZnO83OIZAADEa9HRg2ZzvNziGQAAxGvR0YNmc7zc4hkAAMRr0dGDZnO83OIZAADEa9HRg2ZzvNziGQAAxGvR0YNmc7zc4hkAAEAUxDMAAIAoiGcAAABREM8AAACicOji2c7OzqKbAAAArYR9V/3YwyDyeLaz0U+K+hs7B6httPXW2gEqamlrLUmSZG0r14BM8G19eQAAYpF21ab05crFZ+rXjbupYd81/P/2zW23/7SLmisbHOvsfdP59G231g5X9/gliGf569H91pzPtt2N7upx+3N/0uV7tVQeAIBI5MPOzka/sdM2czwbexHxbNJBLRzdlF7rC3QIRy9eungWjnvlb7rJp621pL+xNb6vJv/8ENxho1rSW31jbfLT1lrpRgy2Df4spg3AlcfJsm/GLewyrpYV3xgVWtsKtqj5UzpUtzEAwHNV6vflep51PdKg+zYu0tz5TPcV9g436nqWhd5pkLbSXeRqLB1UVkm/H/RSx1+HPejyxq16p2GPdzRCVxEHC4N3W2vZHvMpMTx/lf3dNj3h3GhJeFRh28cNqKj4BYz0/FLjWe4GH5WvmtwY3g/FW6g8rNzyHy6ySjfCey2fyPKXvap84ZCnCVtfc8sBADC7KcNlrXqkk+2bO5+NkxvreqeFvm59SpkcVH9jZ2rZYlTJfd+udxrGs6pSXeJZebf5453eE64rk99RmlZr633ugyAvXTwL0tb0f6uo+L42noWhqfj/xXHhqsSYN74Td0rxbHyfhHdrdflyjeGfdO4WDXKmSAYA8FwEHfXSgFVzj3T8sbHz2RjP6nqnNTtse2SlskFHs+5kTO2dVsWz4BAK6agcz0pNK3Z3gw0794SDinNz3PINzbd6+imZl5cgntUH1nnFs/CM587+ODJVJ+1KwR3VKp7VlS/VWTUMF96JhWxvciMAwPNQWDBg6uM2O+OtRp3Ops5nYzyr650WJ3k1jynkD6i6bE3/tEPvtPz9MN8zbh3PqofsuvaEw5JBosxfwoojmHY65ukliGf5axWejRcVzzok5Mq/l2BWcXFyY335UPnGzN3N4Z9t+WYFAGDecnMRX3g8q3uSbC7xrKLXWvW0UXPvtOrZs3D7ecazFj3hin63eNZZ8bbKJ7QXEc86jAuPdlEdt6qXBplrPKvbAgCAg6joEIZpquvkxgPFs9re6bwmN1b0Wku9zfnHs8pJkNMnN7Y9oPCwKvZpcmMX1c+e5c5e7kw+h3iW1pz7uu0lqboN6zNYp8mN5T+Aun8PAADgoPIdwlw3dFqPNNeBqxj8mime1fZOw5Z0+bf6Utlir7Xc+Z1nPKsaFSv/FAx0VZRs0xOu2DgXCUcVWhpkmpqVGwt3Q3pltsZl6+JZmI3bx7Nh/ppNbs+tKQvrB5uVhkNrr+uB4lmhmWY2AgDMVa6nXlodpKpHGrzqaVy+QzxrHuMpNWVnsr/mhfXzzc/1QYP6K7ecazzLp7D8TzvFE1h7FVr0hIPrtJNv0PiXNQvrAwAAxOFFTGCcRjwDAAAOrSmTKxdAPAMAAA6x9svyP3/iGQAAQBTEMwAAgCiIZwAAAFEQzwAAAKIgngEAAERBPAMAAIiCeAYAABAF8QwAACAK4hkAAEAUxDMAAIAoiGcAAABREM8AAACiIJ4BAABEQTwDAACIgngGAAAQBfEMAAAgCuIZAABAFMQzAACAKIhnAAAAURDPAAAAoiCeAQAAREE8AwAAiMLc4hkAAAAHNId4BgAAwPMjngEAAERBPAMAAIiCeAYAABAF8QwAACAK4hkAAEAUxDMAAIAoiGcAAABREM8AAACiIJ4BAABEQTwDAACIgngGAAAQBfEMAAAgCuIZAABAFMQzAACAKIhnAAAAUfh/2UlqPILdbfsAAAAASUVORK5CYII=" alt="" />

解法2:插入排序

解题代码

int findKthLargest(int* nums, int numsSize, int k) {

    int *tempArray = (int *)malloc(sizeof(int)*numsSize);
memset(tempArray,,sizeof(int)*numsSize); for (int i = ; i < numsSize; i++){
for (int j = ; j < numsSize; j++){
if (nums[i]>tempArray[j]){
int b = numsSize - j;
for (int t = ; t <= b; t++){
tempArray[numsSize-t] = tempArray[numsSize-t-];
}
tempArray[j] = nums[i];
break;
}
}
}
return tempArray[k-];
}

LeetCode判断结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABJcAAACACAIAAAA59x+PAAASsUlEQVR4nO3dPW8bV6KA4fyJ/SVxsbiloB+QAO6dwJ3durM7N25SOcEGAtJdYOEigeWFbxGkCOI4bryOKTGzIikzKhwjEKkQIhXL4IbWLUiR80kOPyRypOfFW8jD4eEhXb04Z2Y+OAEAAAAAFIcPlj0BAAAAAMAUqDgAAAAAKBIqDlh1ut1us9nc29ur1WpBEJRKpZ+RRqlUCoKgVqvt7e01m81ut7vs/zoAAIAzQcUBK0qv12s0GtVqtVQq9bOk0+m8e/eu1+ste2orSq/XOz4+7nQ6/egtlUrVarXRaLx//37ZUwMAAFgkKg5YRQ4ODoIgqNfr7XZbts1Gr9drt9v1ej0Igj/++GPZ0wEAAFgYKg5YLbrdbqVSqdVqnU5n2XO5IHQ6nVqtVqlU7LEEAAAXAxUHrBBHR0flcrnRaCx7IheQ/f39crl8dHS07IkAAADMi4oDVoVWq7W1tXV4eLjsiVxYDg8Pt7a2Wq3WsicCAAAwFyoOWAmOjo62trasFJ01x8fHfmcAAFB0VBywfLrdbrlctgp3PhweHpbLZdfIAQCA4qLigOVTqVRcC3ee7O/vVyqVZc8CAABgRlQcsGQODg5qtdqyZ3HpqNVqHj8AAAAKiooDlkmv1wuCwEMFzp9OpxMEgQeCAwCAIjJVxW3e+jDMrc3c7yzdv/rhh1fvl6aeX9YspvjssxhhzLhpLOibjyX6E5fuX839DV/++Mnag/U07zxa1Ox+/fLaaLSX/9hcX9v88uWiBs8g+3utr327sG82L41Go16vL3sWl5R6vW4jKwAAKCK5Ky6jUHKWwiWvuPMIuchPXLp/Nf83HFc7Cwq5lz9+sqbiUqlWq+12e9mzKBK//xD8/Z97vy9iqHa7Xa1WFzESAADAuZKz4kr3ryaard8s+epkkRW3umzeSv2SaT/e4pmz4lJq7dG362sP1q/9uIDayvqIM2UpHzod3W63VCr1er1lT+SsqO7/udgBf/+h/Ld7zz+49/xv/7uAkOv1eqVSyc0qAQBA4chZcemrV5FwSJ4SOnJ65iBoYvU3bI7hYtZgnNTTYx8UXgCLJVTWS4mpjj4nNsbgzPDrY9ooo+LSoirzE2Ovhd+VTOHwkeHfkbcPXhy7+phdO49ujyouuYAWPnL694s7w/WuyBsjB8NvPP2IX7+81j/n9CP6DZm2bvbodr6lwhwV9/Ifm+tr3z46XbX75B+/Jo+M/9Cs8/PRbDb39vamecfordfvPf/g3u7jyME/P/sqeXB++sOGLX+2n+tdV56Mr7jm9cFQwz8mMKy4RYXc3t5es9mcexgAAIBzZZq1uPFraTkq7mooL8KF0o+cW5H9iFfvb96/mnp2+IOSexiHk5z0UuTDYwy/RuoeyczfIeda3NhPTHkxMtNzrLjoWlyOiktsXLz9Iv5SesV9e+dadLvjKOEiQXhyEqrEUzPDKW/FbX4SCsjkkfEfmnZ+fuZIiOb1e+UrXz2/HoSO7b++8lX5ytlUXOSDgt0P7kWPZLxrUsUNyVtxJ4sOuTlCGgAAYGnkvi5u4nLU5IpL5lE4QOKd9mFsf2Daol/sM8NRM+allA4ctVE0uQYzidw0JDvj8l0Xl9iJunnrw2SLpfyqOStu+I/FXheXr+KG62b98jn9Z/Z1cYM1rsTC3enJkXEGr95+cTqF/gpexkVu2d8r2mCRXaOZR0Yf2p9S9IvPuO+0VqvNenfK5vV75c+e7H7wcBSB1Sfl609ehyoutIb21evq6GD5sye7oSW11NPCJCru5KT6pBwdMzZC6Eh/hvuvr4RW805HS1mLqz4pT1zxW2DIdTodj3kAAACFY7onDcQXisZuU0xWXHJPYX+AxKvhrkkMHq+49Kwa81JihOg54dkkXh67KJlVcWmbNBNvDP8U6aV87hUXqaM8FRde+Hp0O3/FhYbtT2aUTOGTf/3yWqKXxiy45a64xA7J8JG0UHz07XCQ5AjTEATBu3fvZnprP3ua1yPNtvt4f1hxf3721fNh4z1+GO2raIANV8yibTYkpeJO9l9fCUVg2gjh483robW7xw+H2z4TFRfsjnaEhv9OsKiQOz4+DoIJq4oAAACrxuzPi0tdQBtbcSnp0j+WyJPEWBkVl9x/GFt9S38pVnGp16WlLvalHom+Fhos9a4madspI/OLp2BsmfCsKi7UIZG1ptFZua6Lyzh/QsWFGunlj59EN0mGTk7Z2ThuU2XuHZWZ0z45GVRcqCqHP1Go4ma+3+YctzYZZM/jh6d1tP/6ysPmybDi9l9Ht1YOOyq60TFeSmnBln7wdMDMEbJ3VI7eMrbiJvGff5WGi3v/838H+d4Up3+Dk9neCwAAsCzme+p3VlwlXj2rihsdSF/5Sn/pnCruJC3kJlZc2knRW8TEhl94xZ2khpyKi/0+q1Fx1SflfikN/hjGW7AbXVUbNlUkyULbF0cm0mtcxWWPkKy4/h1Z+mZUXGgr5vjr7ha1FqfiAABAEclVcSn7IUMvZFzRFXlXykbE0GbFOSsuPtHs20QOXppyR+UcFZfScZk3skyn36EZs8m8om7+Jw0kHzPw6Nu0PZPnWXGpQTXl94qdkrPiJuyonLni5t5R2b+jyetq/2q3/ZNZKi79Wrgw43ZUZo8Q31E56sMxa3GnPH447tK4BV4XZ0clAAAoIvnW4hI3JwkfjWxuTNwiMvfdTWaouGRdDl8b89LUdzeZq+KSaRnustCRUGBmXYgXfefpb5pZcXlbMaN2+vcdGR3vd91pRJ3ehmSKiovd13H6iht8aOLVcdfFzV1xee5uMnPFzXt3k8HiVfmzoN9yJzl3VI6SLNcOxrF3N8kcIVRxsaTMUXHxEUIs9h6V7m4CAACKSN4dlZkbAbMvROs/OiC8ozL6LIHYnR9nWotLu59IzpfGPWkg/ZkEGUeir2XeTSV+o8uM33HydELHb90at6My9NaZnjQwuDtI7LaTQzfv3J5uR2XmkwZyV1z6psqs+0PmuPdmnopL/9BIzc5ccXM+aSB8U8dB7eS7u0koyaI3Owl205a/xj9pIGuEaMUNS29ws8pYvKVdFze6gcqIhT8vzpMGAABAEZnqurh4GCWyYHTC8Bne0evixjz1e9YdlZFJpWzaTHlp7JV1E24oOUvFZT1dIH3WsZDLujnK8NFw6Qua0Xt0zvjU7/gy1KiLRo9Wy1Vxo6dmx984ZcWdnIyeD/4gukSW/r0WUXHxD03c03Lmipvvqd+nhROunf08TxqILayFH+qduoNx4lO/00cYXDL3sHky2iHZvyJuuDCYshYXOjPl0rhhxS0k4U489RsAABST+e5uAmAOut3uHDc4uaT8/kPw938uJuH6tzbpdruLGAwAAOD8UHHAMqlWq+12e9mzuKS02+1qddK9XQAAAFYPFQcsk0ajUa/Xlz2LS0q9Xm80GsueBQAAwNSoOGCZ9Hq9IAhmvVMlZqfT6QRB8P79+2VPBAAAYGpUHLBkDg4O3Oz+/KnVan/88ceyZwEAADALKg5YPpVKxda+86TRaFQqlWXPAgAAYEZUHLB8ut1uuVw+PDxc9kQuBZ1Op1wuuzUlAAAoLioOWAmOjo62traOj4+XPZELzvHx8fb29tHR0bInAgAAMDsqDlgVWq3W9va2Bw+cHZ1OZ3t7u9VqLXsiAAAAc6HigBXi6OioXC67Ru4saDQa5XLZKhwAALgAqDhgteh2u5VKpVarefzAouh0OrVarVKpuBYOAABcDFQcsIocHBwEQVCv19vtdq/XW/Z0Ckmv12u32/V6PQgCDxUAAAAXCRUHrCi9Xq/RaFSr1VKptLe312w2O53Ou3fvRF0WvV7v+Pi40+k0m829vb1SqVStVhuNhkd7AwCAC4aKA1adbrfbz5JarRYEQalU+hlplEqlIAhqtVo/eu2fBAAAFxUVBwAAAABFQsUBAAAAQJFQcQAAAABQJFQcAAAAABQJFQcAAAAARULFAQAAAECRUHEAAAAAUCRUHAAAAAAUCRUHAAAAAEVCxQEAAABAkchbcX+9fdsKKs0XW43nJZIkSZJkTpsvtlv/qf719u25Vtxfb982X2y3ftk53H3VrtdJkiRJkjk93H3VCnaaL7b+++diQi5XxbWCSuuXnaV/eZIkSZIsqK1fdlpB5fwqrvliyyocSZIkSc7s4e6r5s/b51dxjeelpX9nkiRJkiy0jeclFUeSJEmShVHFkSRJkmSRVHEkSZIkWSRVHEmSJEkWSRVHkiRJkkVSxZEkSZJkkVRxJEmSJFkkVRxJkiRJFkkVR5IkSZJFUsWRJEmSZJFUcSRJkiRZJFUcSZIkSRZJFUeSJEmSRVLFkSRJkmSRVHEkSZIkWSRVHEmSJEkWSRVHkiRJkkVSxZEkSZJkkVRxJEmSJFkkVRxJkiRJFkkVR5IkSZJFUsVdVjfvPrq58Wbymc9e3vwo35kr7tPnn649WF97sL724NPPf1v+fFbNr79fP/197ny97MmQJElynBer4vKWyWRrdz/6buPZ0v97znCeq1Fx5/g7P33+aVaf9APm2vOnOcb55vaDKWonlI7T1NFvX1x7sL72YP32zlTjr689/uJpjvHHBNvX3y+g4qb5PUmSJDm9Ki5dFbfq85/ajIobVVme6vj6+/W1778ZvTFfNU15/tPPHw+mlK/iplpa/Ob2g+FXyPiCc1XcdL8nSZIkZ/GyVFzt7kePPu57tzY6/uzlzeHxj37arLfr9TcbN4ZHBt7dnPjRo/GHE3i28d3Ho0Sp3Y18dMr5w69w+rmn73328uZgbuHvOH6eWeOHfofJK2yjj4j8Av35bP40GOfGy2d5jk83/zNYA0ytuEGV/fbFtemrY8rg6bdZjvN37qw9+PTznS+unUHFjVmQnOlLpb191t+TJEmSeb0UFfdm48awImp3R23wZuNGVqFNtUZUuzsqkPDf7Wcb3/VjZvjH+PM374biZ2h6BY2ZZ9b48c/K10iJX6mfvoN5hl4dJPEohgfjTz3/0WhnXnEDZ6mOp58/nmYtrr9JMnsR7NTTtbLf8lfceu7r/QZz/ny4ozIxn4XsqFRxJEmSZ+ulqLisc95s3IguzY2cpuI2fwqn17ON70Jjvtm48ejm3Z9uhkfLPD/jQ6etoKzxo8fnq7i0+USPjz5utopbuIutuH4+5d2EOd11dJ9+/ls9Z8WF7K/1jQ+5wV7NwbA7d5JfQcWRJEkWwMtRcc82vvs4fSdhxqbBaeoiNnhkM2E9ZU0p8/xYBUVGmKKCssaP5qWKCzttdezcSV3IyjGBsWEWnsbUFZdeZVFj64cpl+qpOJIkyQJ4GSru2cvwUlj2ObHrymZci4vaT6DIVsbM86PzjB6ffS1uaMoi4VlW3Ojjiltx/WW0eEpl741MP39oorJi58dvOJnY9Jhn/PCrifNj1+al3OkkteImfG7u35MkSZKL8TJU3OZPHw8rYvOnjLt6xFolf+S0Y9ebxeYz2s34UeTavLTzs3Z4js7vr7PF1hIT88wYP1SJ/XuonGXFpV+Pl2/+w09Z8nVxp/eKjKxWjbnVZOr5sVfDOx7Hnp+yFjd+/P7NIcNfMOX88Hpg6tpgWsWN/9z8vydJkiQX5IWruNSdk6PjN15ubnwXqo7sGzaGXp18j8roUP3zN+8++jhaO6N/pp1fr7ejd24cLVKNNknerT0bzn/MPDPGH45zc+PN5B2V0UFG44yruPQbTk49//p5VVxy+SvSHollt9BFbmkPA5hwfqIhx9zyJHVH5fjxk+OkjR/+ysnltfQdlXlvzTLp9yRJkuRCvFgVx2WadV3fijjxJvspJvYoXvDzsypu+nFIkiR5hqo4LsqLVXH9DYr5H8VW9PMHJipuxnFIkiR5hqo4LsoiVFzO56pdRqd6IgJJkiSXqYojSZIkySKp4kiSJEmySKo4kiRJkiySKo4kSZIki6SKI0mSJMkiqeJIkiRJskiqOJIkSZIskiqOJEmSJIukiiNJkiTJIqniSJIkSbJIqjiSJEmSLJIqjiRJkiSLpIojSZIkySKp4kiSJEmySKo4kiRJkiySKo4kSZIki6SKI0mSJMkiqeJIkiRJskiqOJIkSZIskudacc0XW4e7r5b+nUmSJEmyoB7uvmr+vH1+FdcKKq1gZ+lfmyRJkiQLaivYaQWV86u4//75tvHvrdYvO1bkSJIkSXIqD3dftYKdxr+3ukdH51dx/ZBrBZXmi63G8xJJkiRJMqfNF9utoLKohJui4gAAAAAAq4CKAwAAAIAioeIAAAAAoEioOAAAAAAoEioOAAAAAIqEigMAAACAIqHiAAAAAKBIqDgAAAAAKBIqDgAAAACKhIoDAAAAgCKh4gAAAACgSKg4AAAAACgSKg4AAAAAioSKAwAAAIAioeIAAAAAoEj8P9xFVsKOVXJmAAAAAElFTkSuQmCC" alt="" />

不知为何会出现这样的错误?代码在本机测试正常。


其他算法分析有时间再添加。