蒙特卡洛法计算定积分—Importance Sampling

时间:2021-12-07 02:45:41

蒙特卡洛法计算定积分—Importance Sampling

如上图所示,计算区间[a  b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2  3]上的定积分:∫(x2+4*x*sin(x))dx

 # -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt def f(x):
return x**2 + 4*x*np.sin(x) def intf(x):
return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x) a = 2;
b = 3; # use N draws
N= 10000 X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b
Y =f(X) # CALCULATE THE f(x) # 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N; exactval=intf(b)-intf(a) print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a) # --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000) exactval= intf(b)-intf(a) for N in np.arange(0,1000):
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b
Y =f(X) # CALCULATE THE f(x)
Imc[N]= (b-a) * np.sum(Y)/ N; plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118    Exact number= 11.8113589251

蒙特卡洛法计算定积分—Importance Sampling

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a  b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

蒙特卡洛法计算定积分—Importance Sampling

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a  b]内应该有:

蒙特卡洛法计算定积分—Importance Sampling

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

蒙特卡洛法计算定积分—Importance Sampling

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0  pi]上的积分个∫g(x)dx

 # -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx # The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution. from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt mu = 2;
sig =.7; f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig) plt.figure(figsize=(18,8)) # set the figure size # range of integration
xmax =np.pi
xmin =0 # Number of draws
N =1000 # Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
x = np.random.uniform(low=xmin, high=xmax, size=N)
Ivmc[k] = (xmax-xmin)*np.mean(f(x)) # ============================================
# IMPORTANCE SAMPLING
# ============================================
# CHOOSE Gaussian so it similar to the original functions # Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
# DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
xis = mu + sig*np.random.randn(N,1);
xis = xis[ (xis<xmax) & (xis>xmin)] ; # normalization for gaussian from 0..pi
normal = normfun(np.pi)-normfun(0) # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
Iis[k] =np.mean(f(xis)/p(xis))*normal # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分 plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

蒙特卡洛法计算定积分—Importance Sampling

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

参考:

http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-3.html

蒙特卡洛法计算定积分—Importance Sampling的更多相关文章

  1. Not All Samples Are Created Equal&colon; Deep Learning with Importance Sampling

    目录 概 主要内容 "代码" Katharopoulos A, Fleuret F. Not All Samples Are Created Equal: Deep Learnin ...

  2. Implemented the &OpenCurlyDoubleQuote;Importance Sampling of Reflections from Hair Fibers”

      Just the indirect specular pass by importance sampling. With all layers. Manually traced by 3D Ham ...

  3. &lbrack;Bayes&rsqb; Hist &amp&semi; line&colon; Reject Sampling and Importance Sampling

    吻合度蛮高,但不光滑. > L= > K=/ > x=runif(L) > *x*(-x)^/K)) > hist(x[ind],probability=T, + xla ...

  4. Importance sampling

    用蒙特卡洛求解积分时 (Monte Carlo 随机采样对目标积分函数做近似) importance sampling func p(x) p(x)值大的地方,Monte Carlo多采几次 值小的地 ...

  5. 转 如何理解 重要性采样&lpar;importance sampling&rpar;

    分类: 我叫学术帖2011-03-25 13:22 3232人阅读 评论(4) 收藏 举报 图形 重要性采样是非常有意 思的一个方法.我们首先需要明确,这个方法是基于采样的,也就是基于所谓的蒙特卡洛法 ...

  6. 小小知识点(二十)利用MATLAB计算定积分

    一重定积分 1. Z = trapz(X,Y,dim) 梯形数值积分,通过已知参数x,y按dim维使用梯形公式进行积分 %举例说明1 clc clear all % int(sin(x),0,pi) ...

  7. C&plus;&plus; 计算定积分、不定积分、蒙特卡洛积分法

    封装成了一个类,头文件和源文件如下: integral.h #pragma once //Microsoft Visual Studio 2015 Enterprise #include <io ...

  8. 随机模拟的基本思想和常用采样方法(sampling)

    转自:http://blog.csdn.net/xianlingmao/article/details/7768833 引入 我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不 ...

  9. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

随机推荐

  1. 盘点国内11家已经获得融资的移动CRM平台

    盘点国内11家已经获得融资的移动CRM平台 亿欧网盘点了目前国内已经获得融资的11家移动CRM平台,它们分别是:纷享销客.红圈营销.小满科技.腾腾科技.麦客.美洽.销售易.快消总管.EC营客通.店小三 ...

  2. springmvc配置多视图 - tiles&comma; velocity&comma; freeMarker&comma; jsp

    转自: http://www.cnblogs.com/shanheyongmu/p/5684595.html <!-- Velocity --> <bean id="vel ...

  3. c&num;选择文件文件夹

    C#选择文件 OpenFileDialog fileDialog = new OpenFileDialog(); fileDialog.InitialDirectory = "C://&qu ...

  4. 使用&period;net Reflector手动修改单个dll文件

    在项目中修改bug会存才版本混乱的问题,加上dll中的依赖项目比较多,想要修改单个dll文件中的少量代码是很麻烦的. 可以使用Reflector和Reflexil可以手动修改单个dll文件,我使用的是 ...

  5. C&num; 6&period;0新特性(转载)

    简介 VS 2015中已经包含C# 6.0. C#在发布不同版本时,C#总是会有新特性,比如C#3.0中出现LINQ,C#4.0中的动态特性,c#5.0中的异步操作等.. C# 6.0中与增加了不少新 ...

  6. API 进程、线程函数

    CancelWaitableTimer 这个函数用于取消一个可以等待下去的计时器操作 CallNamedPipe 这个函数由一个希望通过管道通信的一个客户进程调用 ConnectNamedPipe 指 ...

  7. linux c first

    创建文件夹mkdir 文件夹名称删除文件夹rm -rf 文件夹名称创建文件touch test.c删除文件rm -f test.c编译gcc -o test test.c在执行只语句后会生成一个*te ...

  8. C&plus;&plus;智能指针初学小结

    本篇随笔仅作为个人学习<C++ Primer>智能指针一节后的部分小结,抄书严重,伴随个人理解.主要介绍shared_ptr.make_shared.weak_ptr的用法和联系. C++ ...

  9. 阿里云ECS每天一件事D4:安装mysql5&period;5&period;40

    Linux平台上MySQL也没什么好说的了,首先准备一下软件环境: yum install gcc gcc-c++ gcc-g77 autoconf automake make cmake bison ...

  10. PHP弱类型语法的实现

    PHP弱类型语法的实现 前言 借鉴了 TIPI, 对 php 源码进行学习 欢迎大家给予意见, 互相沟通学习 弱类型语法实现方式 (弱变量容器 zval) 所有变量用同一结构表示, 既表示变量值, 也 ...