题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777
Time Limit: 2 Seconds Memory Limit: 65536 KB
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.
There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.
Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to M points, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).
The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).
Output
For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.
Sample Input
2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4
Sample Output
3/1
No solution
题意:
有n个题目,按从简单到难,若把第i难的题目放到第j个位置,会产生P[i][j]的“有趣度”;
现在有一个随机产生这n个题目排列的程序,若一个排列它的所有题目有趣度之和大于等于m,则算作满足要求;
求产生一个满足要求的题目排列的期望次数。
题解:
状压DP做法:state是一个n位的二进制数,每一位 1 or 0 代表了该位置是否被占掉了;
假设dp[state][k]代表:前i道题的放置情况按state安排,产生有趣度为k的方案数;
状态转移:
若要计算cnt道题目按state安排情况下,dp[state][k]的值(所有有趣度k>m的方案都算在k=m里),则:
从state里去掉一道题目,假设去掉的是放在第i个位置上的那道题目,得到new_state(这个new_state必然小于state),
再枚举k=0~m,dp[state][(k+p[cnt][i])] += dp[new_state][k],同样记得把所有有趣度k>m的方案都算到k=m里。
正确性:
当state=0时,即初始dp[0][0]为1,dp[0][1~m]都为0,这是正确的,故可以从state=1开始状态转移;
同时,正如前面说的new_state必然小于state,我们从小到大枚举state,那么计算state时所有new_state都必然已经计算好了。
AC代码:
#include<bits/stdc++.h>
using namespace std; int n,m;
int p[][];
int dp[<<][]; inline int gcd(int m,int n){return n?gcd(n,m%n):m;} int fact[];
void calcfact()
{
fact[]=;
for(int i=;i<=;i++) fact[i]=fact[i-]*i;
} int main()
{
calcfact(); int t;
scanf("%d",&t);
memset(p,,sizeof(p));
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) for(int j=;j<=n;j++) scanf("%d",&p[i][j]); memset(dp,,sizeof(dp));
dp[][]=;
for(int sta=;sta<(<<n);sta++) //遍历所有状态
{
int cnt=; //cnt表示已经安排好了cnt道题目
for(int i=;i<=n;i++) if(sta&(<<(i-))) cnt++; for(int i=;i<=n;i++)
{
if( ( sta & (<<(i-)) ) == ) continue; for(int k=;k<=m;k++)
{
if(k+p[cnt][i]>=m) dp[sta][m]+=dp[sta^(<<(i-))][k];
else dp[sta][k+p[cnt][i]]+=dp[sta^(<<(i-))][k];
}
}
} if(dp[(<<n)-][m]==)
{
printf("No solution\n");
continue;
} int down=dp[(<<n)-][m];
int up=fact[n];
int g=gcd(up,down);
printf("%d/%d\n",up/g,down/g);
}
}
时间复杂度O(n2)+O(2nmn)+O(lg(n!)),显然在数据较大时,主要影响项是O(2nmn),根据数据规模(2^12)*12*500 ≈ 2e7,足够。
PS.自从上次做状压DP专题之后,很久没有再做状压DP的题目了,发现自己对状压DP的理解还是不够深刻,而且忘记地也很快,需要复习巩固。
ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]的更多相关文章
-
ZOJ 3780 - Paint the Grid Again - [模拟][第11届浙江省赛E题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3780 Time Limit: 2 Seconds Me ...
-
zoj3777 Problem Arrangement(状压dp,思路赞)
The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...
-
ZOJ 3777 B - Problem Arrangement 状压DP
LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:有N(\( N <= 12 \))道题,排顺序 ...
-
zoj 3777 Problem Arrangement(壮压+背包)
Problem Arrangement Time Limit: 2 Seconds Memory Limit: 65536 KB The 11th Zhejiang Provincial C ...
-
2014 Super Training #4 B Problem Arrangement --状压DP
原题:ZOJ 3777 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...
-
ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds Me ...
-
FZU - 2218 Simple String Problem(状压dp)
Simple String Problem Recently, you have found your interest in string theory. Here is an interestin ...
-
zoj 3777 Problem Arrangement
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5264 题意:给出n道题目以及每一道题目不同时间做的兴趣值,让你求出所有做题顺序 ...
-
ZOJ 3723 (浙大月赛)状压DP
A了一整天~~~终于搞掉了. 真是血都A出来了. 题目意思很清楚,肯定是状压DP. 我们可以联系一下POJ 1185 炮兵阵地,经典的状压DP. 两道题的区别就在于,这道题的攻击是可以被X挡住的,而 ...
随机推荐
-
Interview website
https://www.interviewcake.com http://www.leetcode.com
-
Struts2文件下载找不到输入流异常
先发异常 Can not find a java.io.InputStream with the name [downloadFile] in the invocation stack. Check ...
-
一步一步学习SignalR进行实时通信_3_通过CORS解决跨域
原文:一步一步学习SignalR进行实时通信_3_通过CORS解决跨域 一步一步学习SignalR进行实时通信\_3_通过CORS解决跨域 SignalR 一步一步学习SignalR进行实时通信_3_ ...
-
Android插件简介
/** * @actor Steffen.D * @time 2015.02.06 * @blog http://www.cnblogs.com/steffen */ Android插件简介 Andr ...
-
JS 设计模式五 -- 命令模式
概念 命令模式中的命令(command) 指的是 一个执行某些待定事情的指令. 用一种松耦合的方式来设计程序,使得请求发送者和请求接收者能够消除彼此之间的耦合关系. 例子 假设html结构如下: &l ...
-
(转载):ASCII,Unicode和UTF-8 编码
UTF-8是Unicode的一种实现方式,也就是它的字节结构有特殊要求,所以我们说一个汉字的范围是0X4E00到0x9FA5,是指unicode值,至于放在utf-8的编码里去就是由三个字节来组织,所 ...
-
MVC4 过滤器(转)
先来看看一个例子演示过滤器有什么用: public class AdminController : Controller { // ... instance variables and constru ...
-
ofo开锁共享平台
http://www.cnblogs.com/mengyu/p/7700980.html
-
python功能代码块记录
python Autopep8——按PEP8风格自动排版Python代码(参考链接) autopep8 --in-place --aggressive --aggressive test_autope ...
-
MySQL5.7源码安装问题汇总
编译安装mysql5.7版本,想试用一下新的版本特性,发现跟之前的5.6版本编译有了一些变化,总结一下避免以后继续入坑.5.6安装方式 cmake版本 5.7编译cmake要求版本最低为2.8,当前为 ...