I have a huge dict structure like this one:
我有一个巨大的字典结构像这样:
my_data = {
'key1': {
'_': 'value1': 'aaa'
},
'key2': {
'_': 'value2': 'bbb',
'key2.1': {
'_': 'ccc',
'key2.1.1': {
'_': 'ddd'
}
}
'key2.2': {
'_': 'eee',
'key2.2.1': {
'_': 'fff'
}
'key2.2.2': {
'_': 'ggg'
}
}
}
}
and so on.
等等。
I want to display it to user in a kind of tree representation, using GTK, TK or anything to be able to browse it collapse and expand branches and probably search keys and values.
我想将它以一种树形表示形式显示给用户,使用GTK、TK或任何能够浏览它的东西,折叠和展开分支,可能搜索键和值。
May be I do not need to develop such a tool by hands and there is already something that can visualize this kind of data out of the box?
也许我不需要手工开发这样一个工具,而且已经有一些东西可以从盒子中可视化这种数据了?
7 个解决方案
#1
8
I do not know of a ready-to-use tool, but you could use Traits UI to swiftly develop your own
我不知道有什么现成的工具,但是您可以使用Traits UI来快速开发自己的工具
from enthought.traits.api \
import HasTraits, Instance
from enthought.traits.ui.api \
import View, VGroup, Item, ValueEditor
class DictEditor(HasTraits):
Object = Instance( object )
def __init__(self, obj, **traits):
super(DictEditor, self).__init__(**traits)
self.Object = obj
def trait_view(self, name=None, view_elements=None):
return View(
VGroup(
Item( 'Object',
label = 'Debug',
id = 'debug',
editor = ValueEditor(),
style = 'custom',
dock = 'horizontal',
show_label = False
),
),
title = 'Dictionary Editor',
width = 800,
height = 600,
resizable = True,
)
def build_sample_data():
my_data = dict(zip(range(10),range(10,20)))
my_data[11] = dict(zip(range(10),range(10,20)))
my_data[11][11] = dict(zip(range(10),range(10,20)))
return my_data
# Test
if __name__ == '__main__':
my_data = build_sample_data()
b = DictEditor(my_data)
b.configure_traits()
That's it. You will have a GUI like:
就是这样。你会有一个图形用户界面:
Traits UI uses the Model-View-Controller approach to create GUI without having the need to programatically create every widget. Here, I use the predefined ValueEditor to display arbitrary types. You can now extend it to support searching, filtering etc...
特性UI使用模型-视图-控制器方法来创建GUI,而无需编程创建每个小部件。在这里,我使用预定义的ValueEditor显示任意类型。您现在可以扩展它来支持搜索、过滤等……
EDIT
编辑
Simple extension to support filtering:
支持过滤的简单扩展:
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 22 12:52:28 2013
@author: kranzth
"""
from enthought.traits.api \
import HasTraits, Instance, Str, on_trait_change
from enthought.traits.ui.api \
import View, VGroup, Item, ValueEditor, TextEditor
from copy import deepcopy
class DictEditor(HasTraits):
SearchTerm = Str()
Object = Instance( object )
def __init__(self, obj, **traits):
super(DictEditor, self).__init__(**traits)
self._original_object = obj
self.Object = self._filter(obj)
def trait_view(self, name=None, view_elements=None):
return View(
VGroup(
Item( 'SearchTerm',
label = 'Search:',
id = 'search',
editor = TextEditor(),
#style = 'custom',
dock = 'horizontal',
show_label = True
),
Item( 'Object',
label = 'Debug',
id = 'debug',
editor = ValueEditor(),
style = 'custom',
dock = 'horizontal',
show_label = False
),
),
title = 'Dictionary Editor',
width = 800,
height = 600,
resizable = True,
)
@on_trait_change("SearchTerm")
def search(self):
self.Object = self._filter(self._original_object, self.SearchTerm)
def _filter(self, object_, search_term=None):
def has_matching_leaf(obj):
if isinstance(obj, list):
return any(
map(has_matching_leaf, obj))
if isinstance(obj, dict):
return any(
map(has_matching_leaf, obj.values()))
else:
try:
if not str(obj) == search_term:
return False
return True
except ValueError:
False
obj = deepcopy(object_)
if search_term is None:
return obj
if isinstance(obj, dict):
for k in obj.keys():
if not has_matching_leaf(obj[k]):
del obj[k]
for k in obj.keys():
if isinstance(obj, dict):
obj[k] = self._filter(obj[k], search_term)
elif isinstance(obj, list):
filter(has_matching_leaf,obj[k])
return obj
def build_sample_data():
def make_one_level_dict():
return dict(zip(range(100),
range(100,150) + map(str,range(150,200))))
my_data = make_one_level_dict()
my_data[11] = make_one_level_dict()
my_data[11][11] = make_one_level_dict()
return my_data
# Test
if __name__ == '__main__':
my_data = build_sample_data()
b = DictEditor(my_data)
b.configure_traits()
will give you a textbox with "filter-as-you-type". The search isn't completely correct for all cases, but you can figure out the idea.
会给你一个文本框“过滤随你输入”。搜索并不是对所有的情况都完全正确,但是你可以想出这个主意。
Please note that in this sample the data in the dict are partly integers and partly strings, and both types will be found.
请注意,在这个示例中,dict中的数据是部分整数和部分字符串,这两种类型都可以找到。
#2
7
I'm finally ended up with converting my data into json
as @PavelAnossov suggested and using d3 Tree Layout.
最后,我将数据转换为@PavelAnossov建议的json并使用d3树布局。
#3
4
There are some great answers already in here, but I believe this one qualifies as "simple" (it uses only python bult-in libraries tkinter and uuid).
这里已经给出了一些很好的答案,但是我相信这个答案是“简单”的(它只使用python中的互斥库tkinter和uuid)。
It is based on John Gaines Jr.'s answer in another question, modified by Will Ware to support lists, modified by me to also support tuples (runs on python 3).
它基于小约翰·盖恩斯在另一个问题中的回答,由Will Ware修改为支持列表,由我修改为支持元组(运行在python 3上)。
I've also reorganized it so that you can call the viewer with something as simple as tk_tree_view(data)
, passing in a dictionary (as in the example at the end).
我还重新组织了它,以便您可以使用tk_tree_view(data)这样简单的方法调用查看器,并传入字典(如最后的示例所示)。
import uuid
import tkinter as tk
from tkinter import ttk
def j_tree(tree, parent, dic):
for key in sorted(dic.keys()):
uid = uuid.uuid4()
if isinstance(dic[key], dict):
tree.insert(parent, 'end', uid, text=key)
j_tree(tree, uid, dic[key])
elif isinstance(dic[key], tuple):
tree.insert(parent, 'end', uid, text=str(key) + '()')
j_tree(tree, uid,
dict([(i, x) for i, x in enumerate(dic[key])]))
elif isinstance(dic[key], list):
tree.insert(parent, 'end', uid, text=str(key) + '[]')
j_tree(tree, uid,
dict([(i, x) for i, x in enumerate(dic[key])]))
else:
value = dic[key]
if isinstance(value, str):
value = value.replace(' ', '_')
tree.insert(parent, 'end', uid, text=key, value=value)
def tk_tree_view(data):
# Setup the root UI
root = tk.Tk()
root.title("tk_tree_view")
root.columnconfigure(0, weight=1)
root.rowconfigure(0, weight=1)
# Setup the Frames
tree_frame = ttk.Frame(root, padding="3")
tree_frame.grid(row=0, column=0, sticky=tk.NSEW)
# Setup the Tree
tree = ttk.Treeview(tree_frame, columns=('Values'))
tree.column('Values', width=100, anchor='center')
tree.heading('Values', text='Values')
j_tree(tree, '', data)
tree.pack(fill=tk.BOTH, expand=1)
# Limit windows minimum dimensions
root.update_idletasks()
root.minsize(root.winfo_reqwidth(), root.winfo_reqheight())
root.mainloop()
if __name__ == "__main__":
# Setup some test data
data = {
"firstName": "John",
"lastName": "Smith",
"gender": "male",
"age": 32,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"},
"phoneNumbers": [
{"type": "home", "number": "212 555-1234"},
{"type": "fax",
"number": "646 555-4567",
"alphabet": [
"abc",
"def",
"ghi"]
}
]}
# call it with
tk_tree_view(data)
It looks like this:
它看起来像这样:
#4
2
If you're using an IDE set a breakpoint after the dictionary is initialized and has the data you want to explore then run in debug mode. There should be a "Variables" view in debug mode where you can expand and collapse the dictionary as you mentioned.
如果您正在使用IDE,请在字典初始化后设置断点,并在调试模式下运行您想要研究的数据。在调试模式中应该有一个“变量”视图,您可以像前面提到的那样展开和折叠字典。
#5
2
Just complement @Thorsten's answer. The package traits
has been refactored since a long time ago. The correct way to run Thorsten's code is:
只是补充@Thorsten回答。包的特性很久以前就被重构了。运行Thorsten代码的正确方法是:
- install traits module:
sudo apt-get install python-traitsui
- 安装特性模块:sudo apt-get install python-traitsui
-
change the module import lines in his code to:
将其代码中的模块导入行更改为:
from traits.api \ import HasTraits, Instance, Str, on_trait_change from traitsui.api \ import View, VGroup, Item, ValueEditor, TextEditor
#6
2
This simple function prints a dictionary in table form. It can also deal with nested dictionaries.
这个简单的函数以表的形式打印字典。它还可以处理嵌套字典。
def visualise_dict(d,lvl=0):
# go through the dictionary alphabetically
for k in sorted(d):
# print the table header if we're at the beginning
if lvl == 0 and k == sorted(d)[0]:
print('{:<25} {:<15} {:<10}'.format('KEY','LEVEL','TYPE'))
print('-'*79)
indent = ' '*lvl # indent the table to visualise hierarchy
t = str(type(d[k]))
# print details of each entry
print("{:<25} {:<15} {:<10}".format(indent+str(k),lvl,t))
# if the entry is a dictionary
if type(d[k])==dict:
# visualise THAT dictionary with +1 indent
visualise_dict(d[k],lvl+1)
With a sample dictionary:
样本字典:
d = {}
d.update({1:{},2:{}})
d[1]['foo'] = {}
d[1]['foo']['bar'] = 1
d[2]['bar'] = 5.2
visualise_dict(d)
returns
返回
In [1]: visualise_dict(d)
KEY LEVEL TYPE
-------------------------------------------------------------------------------
1 0 <class 'dict'>
foo 1 <class 'dict'>
bar 2 <class 'int'>
2 0 <class 'dict'>
bar 1 <class 'float'>
#7
0
If you use a browser with the JSONViewer extension this might work for you:
如果您使用带有JSONViewer扩展名的浏览器,这可能适合您:
import json
import tempfile
import os
import subprocess
def view_obj(obj):
(f, filepath)= tempfile.mkstemp()
os.close(f)
with open(filepath, 'w') as f:
json.dump(obj, f)
subprocess.call(["google-chrome", filepath])
view_obj({'key':'value'}) # Opens Chrome and renders JSON nicely
#1
8
I do not know of a ready-to-use tool, but you could use Traits UI to swiftly develop your own
我不知道有什么现成的工具,但是您可以使用Traits UI来快速开发自己的工具
from enthought.traits.api \
import HasTraits, Instance
from enthought.traits.ui.api \
import View, VGroup, Item, ValueEditor
class DictEditor(HasTraits):
Object = Instance( object )
def __init__(self, obj, **traits):
super(DictEditor, self).__init__(**traits)
self.Object = obj
def trait_view(self, name=None, view_elements=None):
return View(
VGroup(
Item( 'Object',
label = 'Debug',
id = 'debug',
editor = ValueEditor(),
style = 'custom',
dock = 'horizontal',
show_label = False
),
),
title = 'Dictionary Editor',
width = 800,
height = 600,
resizable = True,
)
def build_sample_data():
my_data = dict(zip(range(10),range(10,20)))
my_data[11] = dict(zip(range(10),range(10,20)))
my_data[11][11] = dict(zip(range(10),range(10,20)))
return my_data
# Test
if __name__ == '__main__':
my_data = build_sample_data()
b = DictEditor(my_data)
b.configure_traits()
That's it. You will have a GUI like:
就是这样。你会有一个图形用户界面:
Traits UI uses the Model-View-Controller approach to create GUI without having the need to programatically create every widget. Here, I use the predefined ValueEditor to display arbitrary types. You can now extend it to support searching, filtering etc...
特性UI使用模型-视图-控制器方法来创建GUI,而无需编程创建每个小部件。在这里,我使用预定义的ValueEditor显示任意类型。您现在可以扩展它来支持搜索、过滤等……
EDIT
编辑
Simple extension to support filtering:
支持过滤的简单扩展:
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 22 12:52:28 2013
@author: kranzth
"""
from enthought.traits.api \
import HasTraits, Instance, Str, on_trait_change
from enthought.traits.ui.api \
import View, VGroup, Item, ValueEditor, TextEditor
from copy import deepcopy
class DictEditor(HasTraits):
SearchTerm = Str()
Object = Instance( object )
def __init__(self, obj, **traits):
super(DictEditor, self).__init__(**traits)
self._original_object = obj
self.Object = self._filter(obj)
def trait_view(self, name=None, view_elements=None):
return View(
VGroup(
Item( 'SearchTerm',
label = 'Search:',
id = 'search',
editor = TextEditor(),
#style = 'custom',
dock = 'horizontal',
show_label = True
),
Item( 'Object',
label = 'Debug',
id = 'debug',
editor = ValueEditor(),
style = 'custom',
dock = 'horizontal',
show_label = False
),
),
title = 'Dictionary Editor',
width = 800,
height = 600,
resizable = True,
)
@on_trait_change("SearchTerm")
def search(self):
self.Object = self._filter(self._original_object, self.SearchTerm)
def _filter(self, object_, search_term=None):
def has_matching_leaf(obj):
if isinstance(obj, list):
return any(
map(has_matching_leaf, obj))
if isinstance(obj, dict):
return any(
map(has_matching_leaf, obj.values()))
else:
try:
if not str(obj) == search_term:
return False
return True
except ValueError:
False
obj = deepcopy(object_)
if search_term is None:
return obj
if isinstance(obj, dict):
for k in obj.keys():
if not has_matching_leaf(obj[k]):
del obj[k]
for k in obj.keys():
if isinstance(obj, dict):
obj[k] = self._filter(obj[k], search_term)
elif isinstance(obj, list):
filter(has_matching_leaf,obj[k])
return obj
def build_sample_data():
def make_one_level_dict():
return dict(zip(range(100),
range(100,150) + map(str,range(150,200))))
my_data = make_one_level_dict()
my_data[11] = make_one_level_dict()
my_data[11][11] = make_one_level_dict()
return my_data
# Test
if __name__ == '__main__':
my_data = build_sample_data()
b = DictEditor(my_data)
b.configure_traits()
will give you a textbox with "filter-as-you-type". The search isn't completely correct for all cases, but you can figure out the idea.
会给你一个文本框“过滤随你输入”。搜索并不是对所有的情况都完全正确,但是你可以想出这个主意。
Please note that in this sample the data in the dict are partly integers and partly strings, and both types will be found.
请注意,在这个示例中,dict中的数据是部分整数和部分字符串,这两种类型都可以找到。
#2
7
I'm finally ended up with converting my data into json
as @PavelAnossov suggested and using d3 Tree Layout.
最后,我将数据转换为@PavelAnossov建议的json并使用d3树布局。
#3
4
There are some great answers already in here, but I believe this one qualifies as "simple" (it uses only python bult-in libraries tkinter and uuid).
这里已经给出了一些很好的答案,但是我相信这个答案是“简单”的(它只使用python中的互斥库tkinter和uuid)。
It is based on John Gaines Jr.'s answer in another question, modified by Will Ware to support lists, modified by me to also support tuples (runs on python 3).
它基于小约翰·盖恩斯在另一个问题中的回答,由Will Ware修改为支持列表,由我修改为支持元组(运行在python 3上)。
I've also reorganized it so that you can call the viewer with something as simple as tk_tree_view(data)
, passing in a dictionary (as in the example at the end).
我还重新组织了它,以便您可以使用tk_tree_view(data)这样简单的方法调用查看器,并传入字典(如最后的示例所示)。
import uuid
import tkinter as tk
from tkinter import ttk
def j_tree(tree, parent, dic):
for key in sorted(dic.keys()):
uid = uuid.uuid4()
if isinstance(dic[key], dict):
tree.insert(parent, 'end', uid, text=key)
j_tree(tree, uid, dic[key])
elif isinstance(dic[key], tuple):
tree.insert(parent, 'end', uid, text=str(key) + '()')
j_tree(tree, uid,
dict([(i, x) for i, x in enumerate(dic[key])]))
elif isinstance(dic[key], list):
tree.insert(parent, 'end', uid, text=str(key) + '[]')
j_tree(tree, uid,
dict([(i, x) for i, x in enumerate(dic[key])]))
else:
value = dic[key]
if isinstance(value, str):
value = value.replace(' ', '_')
tree.insert(parent, 'end', uid, text=key, value=value)
def tk_tree_view(data):
# Setup the root UI
root = tk.Tk()
root.title("tk_tree_view")
root.columnconfigure(0, weight=1)
root.rowconfigure(0, weight=1)
# Setup the Frames
tree_frame = ttk.Frame(root, padding="3")
tree_frame.grid(row=0, column=0, sticky=tk.NSEW)
# Setup the Tree
tree = ttk.Treeview(tree_frame, columns=('Values'))
tree.column('Values', width=100, anchor='center')
tree.heading('Values', text='Values')
j_tree(tree, '', data)
tree.pack(fill=tk.BOTH, expand=1)
# Limit windows minimum dimensions
root.update_idletasks()
root.minsize(root.winfo_reqwidth(), root.winfo_reqheight())
root.mainloop()
if __name__ == "__main__":
# Setup some test data
data = {
"firstName": "John",
"lastName": "Smith",
"gender": "male",
"age": 32,
"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021"},
"phoneNumbers": [
{"type": "home", "number": "212 555-1234"},
{"type": "fax",
"number": "646 555-4567",
"alphabet": [
"abc",
"def",
"ghi"]
}
]}
# call it with
tk_tree_view(data)
It looks like this:
它看起来像这样:
#4
2
If you're using an IDE set a breakpoint after the dictionary is initialized and has the data you want to explore then run in debug mode. There should be a "Variables" view in debug mode where you can expand and collapse the dictionary as you mentioned.
如果您正在使用IDE,请在字典初始化后设置断点,并在调试模式下运行您想要研究的数据。在调试模式中应该有一个“变量”视图,您可以像前面提到的那样展开和折叠字典。
#5
2
Just complement @Thorsten's answer. The package traits
has been refactored since a long time ago. The correct way to run Thorsten's code is:
只是补充@Thorsten回答。包的特性很久以前就被重构了。运行Thorsten代码的正确方法是:
- install traits module:
sudo apt-get install python-traitsui
- 安装特性模块:sudo apt-get install python-traitsui
-
change the module import lines in his code to:
将其代码中的模块导入行更改为:
from traits.api \ import HasTraits, Instance, Str, on_trait_change from traitsui.api \ import View, VGroup, Item, ValueEditor, TextEditor
#6
2
This simple function prints a dictionary in table form. It can also deal with nested dictionaries.
这个简单的函数以表的形式打印字典。它还可以处理嵌套字典。
def visualise_dict(d,lvl=0):
# go through the dictionary alphabetically
for k in sorted(d):
# print the table header if we're at the beginning
if lvl == 0 and k == sorted(d)[0]:
print('{:<25} {:<15} {:<10}'.format('KEY','LEVEL','TYPE'))
print('-'*79)
indent = ' '*lvl # indent the table to visualise hierarchy
t = str(type(d[k]))
# print details of each entry
print("{:<25} {:<15} {:<10}".format(indent+str(k),lvl,t))
# if the entry is a dictionary
if type(d[k])==dict:
# visualise THAT dictionary with +1 indent
visualise_dict(d[k],lvl+1)
With a sample dictionary:
样本字典:
d = {}
d.update({1:{},2:{}})
d[1]['foo'] = {}
d[1]['foo']['bar'] = 1
d[2]['bar'] = 5.2
visualise_dict(d)
returns
返回
In [1]: visualise_dict(d)
KEY LEVEL TYPE
-------------------------------------------------------------------------------
1 0 <class 'dict'>
foo 1 <class 'dict'>
bar 2 <class 'int'>
2 0 <class 'dict'>
bar 1 <class 'float'>
#7
0
If you use a browser with the JSONViewer extension this might work for you:
如果您使用带有JSONViewer扩展名的浏览器,这可能适合您:
import json
import tempfile
import os
import subprocess
def view_obj(obj):
(f, filepath)= tempfile.mkstemp()
os.close(f)
with open(filepath, 'w') as f:
json.dump(obj, f)
subprocess.call(["google-chrome", filepath])
view_obj({'key':'value'}) # Opens Chrome and renders JSON nicely