在特定时间后执行python函数,而不使用芹菜

时间:2023-02-09 01:21:42

I am trying to execute a python function after specific time without using celery. I'm hitting a url using requests when requests raises any exception then after 60 seconds I execute same function again.

我尝试在不使用芹菜的特定时间后执行python函数。当请求引发任何异常时,我使用请求点击url,然后在60秒后再次执行相同的函数。

def myfun():
    try:
        response = requests.post('url', data=data)
    except Exception as e:
        sleep(60)
        myfun()

But this is recursive function and will consume memory. I want to write an async function to execute my task. How can this be done?

但这是递归函数,会消耗内存。我想编写一个异步函数来执行我的任务。怎么做呢?

1 个解决方案

#1


1  

You can use ayncronous tasks in python multiprocessing. Here is an example

您可以在python多处理中使用ayncriness任务。这是一个例子

from multiprocessing import Pool
import time

def f(x):
    return x*x

if __name__ == '__main__':
    pool = Pool(processes=4)              # start 4 worker processes

    result = pool.apply_async(f, (10,))   # evaluate "f(10)" asynchronously in a single process
    print result.get(timeout=1)           # prints "100" unless your computer is *very* slow

    print pool.map(f, range(10))          # prints "[0, 1, 4,..., 81]"

    it = pool.imap(f, range(10))
    print it.next()                       # prints "0"
    print it.next()                       # prints "1"
    print it.next(timeout=1)              # prints "4" unless your computer is *very* slow

    result = pool.apply_async(time.sleep, (10,))
    print result.get(timeout=1)           # raises multiprocessing.TimeoutError

Read full documentation here.

阅读完整的文档。

#1


1  

You can use ayncronous tasks in python multiprocessing. Here is an example

您可以在python多处理中使用ayncriness任务。这是一个例子

from multiprocessing import Pool
import time

def f(x):
    return x*x

if __name__ == '__main__':
    pool = Pool(processes=4)              # start 4 worker processes

    result = pool.apply_async(f, (10,))   # evaluate "f(10)" asynchronously in a single process
    print result.get(timeout=1)           # prints "100" unless your computer is *very* slow

    print pool.map(f, range(10))          # prints "[0, 1, 4,..., 81]"

    it = pool.imap(f, range(10))
    print it.next()                       # prints "0"
    print it.next()                       # prints "1"
    print it.next(timeout=1)              # prints "4" unless your computer is *very* slow

    result = pool.apply_async(time.sleep, (10,))
    print result.get(timeout=1)           # raises multiprocessing.TimeoutError

Read full documentation here.

阅读完整的文档。