BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

时间:2021-01-14 00:52:17

BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了。算个可重集的排列数和组合数就行了...要写高精..

---------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 1009;
 
int deg[maxn], N, m, c;
int p[maxn], pn;
int cnt[maxn];
bool F[maxn];
 
void Init() {
m = 0;
scanf("%d", &N);
for(int i = 0; i < N; i++) {
scanf("%d", deg + i);
if(~deg[i])
m++, c += deg[i] - 1;
}
pn = 0;
memset(F, 0, sizeof F);
for(int i = 2; i <= N; i++) {
if(!F[i])
p[pn++] = i;
for(int j = 0; j < pn && i * p[j] <= N; j++) {
F[i * p[j]] = true;
if(i % p[j] == 0) break;
}
}
}
 
void Work(int V, bool t) {
for(int x = 2; x <= V; x++ )
for(int i = 0, v = x; i < pn && v != 1; i++)
for(; v % p[i] == 0; v /= p[i], t ? cnt[i]++ : cnt[i]--);
}
 
struct BigInt {
static const int MAXN = 10000;
static const int BASE = 10000;
static const int WID = 4;
int s[MAXN], n;
BigInt(int _n = 0) : n(_n) {
memset(s, 0, sizeof s);
}
BigInt operator = (int num) {
for(; num; s[n++] = num % BASE, num /= BASE);
return *this;
}
BigInt operator *= (const int &x) {
for(int i = 0; i < n; i++) s[i] *= x;
for(int i = 0; i < n; i++) if(s[i] >= BASE) {
s[i + 1] += s[i] / BASE;
s[i] %= BASE;
}
if(s[n]) n++;
return *this;
}
void WRITE() {
int buf[8], t;
for(int i = n; i--; ) {
t = 0;
for(int v = s[i]; v; buf[t++] = v % 10, v /= 10);
if(i + 1 != n) {
for(int j = WID - t; j; j--)
putchar('0');
}
while(t--)
putchar(buf[t] + '0');
}
}
};
 
int main() {
Init();
if(c > N - 2) {
puts("0"); return 0;
}
memset(cnt, 0, sizeof cnt);
for(int i = 0, v = N - m; i < pn && v != 1; i++)
for(; v % p[i] == 0; v /= p[i], cnt[i]++);
for(int i = 0, t = N - 2 - c; i < pn; i++) 
if(cnt[i] > 0) cnt[i] *= t;
Work(N - 2, 1);
Work(N - c - 2, 0);
for(int i = 0; i < N; i++)
if(~deg[i]) Work(deg[i] - 1, 0);
BigInt ans; ans = 1;
for(int i = 0; i < pn; i++)
for(; cnt[i]--; ans *= p[i]);
ans.WRITE();
return 0;
}

---------------------------------------------------------------------

1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3412  Solved: 1358
[Submit][Status][Discuss]

Description

自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

Input

第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

两棵树分别为1-2-3;1-3-2

Source

BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )的更多相关文章

  1. BZOJ 1005 &lbrack;HNOI2008&rsqb; 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. BZOJ 1005 &lbrack;HNOI2008&rsqb;明明的烦恼 &lpar;Prufer编码 &plus; 组合数学 &plus; 高精度&rpar;

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  3. BZOJ 1005 &lbrack;HNOI2008&rsqb;明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  4. BZOJ 1005&colon; &lbrack;HNOI2008&rsqb;明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005&colon; &lbrack;HNOI2008&rsqb;明明的烦恼 prufer编号&amp&semi;&amp&semi;生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. bzoj 1005 &lbrack;HNOI2008&rsqb; 明明的烦恼 &lpar;prufer编码&rpar;

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  7. BZOJ 1005&colon; &lbrack;HNOI2008&rsqb;明明的烦恼&lpar;高精度&plus;prufer序&rpar;

    传送门 解题思路 看到度数和生成树个树,可以想到\(prufer\)序,而一张规定度数的图的生成树个数为\(\frac{(n-2)!}{\prod\limits_{i=1}^n(d(i)-1)!}\) ...

  8. BZOJ&period;1005&period;&lbrack;HNOI2008&rsqb;明明的烦恼&lpar;Prufer 高精 排列组合&rpar;

    题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...

  9. BZOJ 1005&colon; &lbrack;HNOI2008&rsqb;明明的烦恼(prufer数列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 题意: Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标 ...

随机推荐

  1. android控件的对齐方式&lpar;转&rpar;

    <?xml version="1.0" encoding="utf-8"?> <!-- android:layout_above 将该控件的底 ...

  2. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels(二)

    之前给导师汇报时,主要是论文涉及公式的一些推导

  3. SAP NWBC for HTML and Desktop configuration steps&lbrack;From sdn&rsqb;

    Summary :- This dcoumnenst conatin the information about requirement , hardware , configuration step ...

  4. 对抗静态分析——运行时修复dex

    对抗静态分析——运行时修复dex   本文来源:i春秋社区-分享你的技术,为安全加点温度 零.写在前面   这个系列本来题目想写对抗反编译,可是想想对抗反编译的这个范围有点大,总结如下 灵魂作图   ...

  5. 核心梳理——消息处理的骨架流程——ESFramework 4&period;0 进阶(02)

    在ESFramework 4.0 概述一文中,我们提到ESFramework.dll作为通信框架的核心,定义了消息处理的骨架流程,本文我们来详细剖析这个流程以及该骨架中所涉及的各个组件.ESFrame ...

  6. Good Bye 2017 D&period; New Year and Arbitrary Arrangement

    看了别人的题解 首先这题是一个dp dp[i][j] i是当前有多少个a j是当前有多少个ab子序列 dp[i][j] = dp[i+1][j]*Pa + dp[i][i+j]*Pb; i,j 时加一 ...

  7. &lbrack;好文分享&rsqb;MySQL 加锁处理分析

    原文转自:http://hedengcheng.com/?p=771 背景 MySQL/InnoDB的加锁分析,一直是一个比较困难的话题.我在工作过程中,经常会有同事咨询这方面的问题.同时,微博上也经 ...

  8. Eclipse CDT 插件列表

    http://www.bestplugins.com/software/eclipse-c-plugin.html

  9. Python 创建包含列表的元组

    “可变”的tuple前面我们看到了tuple一旦创建就不能修改.现在,我们来看一个“可变”的tuple:>>> t = ('a', 'b', ['A', 'B'])注意到 t 有 3 ...

  10. python3&lowbar;ftp文件传输

    Python中的ftplib模块 Python中默认安装的ftplib模块定义了FTP类,其中函数有限,可用来实现简单的ftp客户端,用于上传或下载文件 FTP的工作流程及基本操作可参考协议RFC95 ...