1、 均值
数学定义: (自己搜一下)
Matlab函数:mean
>>X=[1,2,3]
>>mean(X)=2
如果X是一个矩阵,则其均值是一个向量组。mean(X,1)为列向量的均值,mean(X,2)为行向量的均值。
>>X=[1 2 3
4 5 6]
>>mean(X,1)=[2.5, 3.5, 4.5]
>>mean(X,2)=[2
5]
若要求整个矩阵的均值,则为mean(mean(X))。
>>mean(mean(X))=3.5
也可使用mean2函数:
>>mean2(X)=3.5
median,求一组数据的中值,用法与mean相同。
>>X=[1,2,9]
>>mean(X)=4
>>median(X)=2
2、 方差
数学定义:(自己搜一下)
方差是各个数据与平均数之差的平方的和的平均数,即 ,其中,x_表示样本的平均数,n表示样本的数量,xn表示个体,而s^2就表示方差。而当用 作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n 倍, 的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用 来估计X的方差,并且把它叫做“样本方差”。(引自百度百科)
均方差:
Matlab 函数:var
要注意的是var函数所采用公式中,分母不是 ,而是 。这是因为var函数实际上求的并不是方差,而是误差理论中“有限次测量数据的标准偏差的估计值”。
>>X=[1,2,3,4]
>>var(X)=1.6667
>> sum((X(1,:)-mean(X)).^2)/length(X)=1.2500
>> sum((X(1,:)-mean(X)).^2)/(length(X)-1)=1.6667
var没有求矩阵的方差功能,可使用std先求均方差,再平方得到方差。
std,均方差,std(X,0,1)求列向量方差,std(X,0,2)求行向量方差。
>>X=[1 2
3 4]
>>std(X,0,1)=1.4142 1.4142
>>std(X,0,2)=0.7071
0.7071
若要求整个矩阵所有元素的均方差,则要使用std2函数:
>>std2(X)=1.2910