Windows Socket 套接字编程原理

时间:2023-01-01 00:30:32
原文地址:http://blog.sina.com.cn/s/blog_7c35df9b0100x64v.html

一、客户机/服务器模式
在TCP/IP网络中两个进程间的相互作用的主机模式是客户机/服务器模式(Client/Server model)。该模式的建立基于以下两点:1、非对等作用;2、通信完全是异步的。客户机/服务器模式在操作过程中采取的是主动请示方式:

首先服务器方要先启动,并根据请示提供相应服务:(过程如下)
1、打开一通信通道并告知本地主机,它愿意在某一个公认地址上接收客户请求。
2、等待客户请求到达该端口。
3、接收到重复服务请求,处理该请求并发送应答信号。
4、返回第二步,等待另一客户请求
5、关闭服务器。
客户方:
1、打开一通信通道,并连接到服务器所在主机的特定端口。
2、向服务器发送服务请求报文,等待并接收应答;继续提出请求……
3、请求结束后关闭通信通道并终止。

 二、套接字


◆先看定义:

typedef unsigned int u_int; typedef u_int SOCKET;

◆Socket相当于进行网络通信两端的插座,只要对方的Socket和自己的Socket有通信联接,双方就可以发送和接收数据了。其定义类似于文件句柄的定义。

◆Socket有五种不同的类型:

1、流式套接字(stream socket)
定义:

#define SOCK_STREAM 1 

流式套接字提供了双向、有序的、无重复的以及无记录边界的数据流服务,适合处理大量数据。它是面向联结的,必须建立数据传输链路,同时还必须对传输的数据进行验证,确保数据的准确性。因此,系统开销较大。

2、 数据报套接字(datagram socket)

定义:

#define SOCK_DGRAM 2 

数据报套接字也支持双向的数据流,但不保证传输数据的准确性,但保留了记录边界。由于数据报套接字是无联接的,例如广播时的联接,所以并不保证接收端是否正在侦听。数据报套接字传输效率比较高。

3、原始套接字(raw-protocol interface)

定义:

#define SOCK_RAW 3 

原始套接字保存了数据包中的完整IP头,前面两种套接字只能收到用户数据。因此可以通过原始套接字对数据进行分析。
其它两种套接字不常用,这里就不介绍了。

◆Socket开发所必须需要的文件(以WinSock V2.0为例):

头文件:Winsock2.h

库文件:WS2_32.LIB

动态库:W32_32.DLL

 一些重要的定义

1、数据类型的基本定义:这个大家一看就懂。

typedef unsigned char u_char; typedef unsigned short u_short; typedef unsigned int u_int; typedef unsigned long u_long;

2、 网络地址的数据结构,有一个老的和一个新的的,请大家留意,如果想知道为什么,
请发邮件给Bill Gate。其实就是计算机的IP地址,不过一般不用用点分开的IP地
址,当然也提供一些转换函数。

◆ 旧的网络地址结构的定义,为一个4字节的联合:

struct in_addr { union { struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b; struct { u_short s_w1,s_w2; } S_un_w; u_long S_addr; } S_un; #define s_addr S_un.S_addr //下面几行省略,反正没什么用处。 };

其实完全不用这么麻烦,请看下面:

◆ 新的网络地址结构的定义:
非常简单,就是一个无符号长整数 unsigned long。举个例子:IP地址为127.0.0.1的网络地址是什么呢?请看定义:

#define INADDR_LOOPBACK 0x7f000001

3、 套接字地址结构

(1)、sockaddr结构:

struct sockaddr { u_short sa_family; char sa_data[14]; };

sa_family为网络地址类型,一般为AF_INET,表示该socket在Internet域中进行通信,该地址结构随选择的协议的不同而变 化,因此一般情况下另一个与该地址结构大小相同的sockaddr_in结构更为常用,sockaddr_in结构用来标识TCP/IP协议下的地址。换 句话说,这个结构是通用socket地址结构,而下面的sockaddr_in是专门针对Internet域的socket地址结构。

(2)、sockaddr_in结构

struct sockaddr_in { short sin_family; u_short sin_port; struct in_addr sin_addr; char sin_zero[8]; };

sin _family为网络地址类型,必须设定为AF_INET。sin_port为服务端口,注意不要使用已固定的服务端口,如HTTP的端口80等。如果端 口设置为0,则系统会自动分配一个唯一端口。sin_addr为一个unsigned long的IP地址。sin_zero为填充字段,纯粹用来保证结构的大小。

◆ 将常用的用点分开的IP地址转换为unsigned long类型的IP地址的函数:

unsigned long inet_addr(const char FAR * cp )

用法:

unsigned long addr=inet_addr("192.1.8.84")

◆ 如果将sin_addr设置为INADDR_ANY,则表示所有的IP地址,也即所有的计算机。

#define INADDR_ANY (u_long)0x00000000

4、 主机地址:

先看定义:

struct hostent { char FAR * h_name; char FAR * FAR * h_aliases; short h_addrtype; short h_length; char FAR * FAR * h_addr_list; #define h_addr h_addr_list[0] }; h_name为主机名字。 h_aliases为主机别名列表。 h_addrtype为地址类型。 h_length为地址类型。 h_addr_list为IP地址,如果该主机有多个网卡,就包括地址的列表。

另外还有几个类似的结构,这里就不一一介绍了。

5、 常见TCP/IP协议的定义:

#define IPPROTO_IP 0  #define IPPROTO_ICMP 1  #define IPPROTO_IGMP 2  #define IPPROTO_TCP 6 #define IPPROTO_UDP 17  #define IPPROTO_RAW 255 

具体是什么协议,大家一看就知道了。

 套接字的属性

为了灵活使用套接字,我们可以对它的属性进行设定。

1、 属性内容:

//允许调试输出 #define SO_DEBUG 0x0001 //是否监听模式 #define SO_ACCEPTCONN 0x0002 //套接字与其他套接字的地址绑定 #define SO_REUSEADDR 0x0004 //保持连接 #define SO_KEEPALIVE 0x0008 //不要路由出去 #define SO_DONTROUTE 0x0010 //设置为广播 #define SO_BROADCAST 0x0020 //使用环回不通过硬件 #define SO_USELOOPBACK 0x0040 //当前拖延值 #define SO_LINGER 0x0080 //是否加入带外数据 #define SO_OOBINLINE 0x0100 //禁用LINGER选项 #define SO_DONTLINGER (int)(~SO_LINGER) //发送缓冲区长度 #define SO_SNDBUF 0x1001 //接收缓冲区长度 #define SO_RCVBUF 0x1002 //发送超时时间 #define SO_SNDTIMEO 0x1005 //接收超时时间 #define SO_RCVTIMEO 0x1006 //错误状态 #define SO_ERROR 0x1007 //套接字类型 #define SO_TYPE 0x1008

2、 读取socket属性:

int getsockopt(SOCKET s, int level, int optname, char FAR * optval, int FAR * optlen)

s为欲读取属性的套接字。level为套接字选项的级别,大多数是特定协议和套接字专有的。如IP协议应为 IPPROTO_IP。

optname为读取选项的名称 optval为存放选项值的缓冲区指针。 optlen为缓冲区的长度

用法:

int ttl=0; //读取TTL值 int rc = getsockopt( s, IPPROTO_IP, IP_TTL, (char *)&ttl, sizeof(ttl)); //来自MS platform SDK 2003

3、 设置socket属性:

int setsockopt(SOCKET s,int level, int optname,const char FAR * optval, int optlen)

s为欲设置属性的套接字。
level为套接字选项的级别,用法同上。
optname为设置选项的名称
optval为存放选项值的缓冲区指针。
optlen为缓冲区的长度

用法:

int ttl=32; //设置TTL值 int rc = setsockopt( s, IPPROTO_IP, IP_TTL, (char *)&ttl, sizeof(ttl));

 套接字的使用步骤

1、启动Winsock:对Winsock DLL进行初始化,协商Winsock的版本支持并分配必要的
资源。(服务器端和客户端)

int WSAStartup( WORD wVersionRequested, LPWSADATA lpWSAData ) wVersionRequested为打算加载Winsock的版本,一般如下设置: wVersionRequested=MAKEWORD(2,0) 或者直接赋值:wVersionRequested=2 LPWSADATA为初始化Socket后加载的版本的信息,定义如下: typedef struct WSAData { WORD wVersion; WORD wHighVersion; char szDescription[WSADESCRIPTION_LEN+1]; char szSystemStatus[WSASYS_STATUS_LEN+1]; unsigned short iMaxSockets; unsigned short iMaxUdpDg; char FAR * lpVendorInfo; } WSADATA, FAR * LPWSADATA;

如果加载成功后数据为:

wVersion=2表示加载版本为2.0。 wHighVersion=514表示当前系统支持socket最高版本为2.2。 szDescription="WinSock 2.0" szSystemStatus="Running"表示正在运行。 iMaxSockets=0表示同时打开的socket最大数,为0表示没有限制。 iMaxUdpDg=0表示同时打开的数据报最大数,为0表示没有限制。 lpVendorInfo没有使用,为厂商指定信息预留。

该函数使用方法:

WORD wVersion=MAKEWORD(2,0); WSADATA wsData; int nResult= WSAStartup(wVersion,&wsData); if(nResult !=0) { //错误处理 }

2、创建套接字:(服务器端和客户端)

SOCKET socket( int af, int type, int protocol ); af为网络地址类型,一般为AF_INET,表示在Internet域中使用。 type为套接字类型,前面已经介绍了。 protocol为指定网络协议,一般为IPPROTO_IP。

用法:

SOCKET sock=socket(AF_INET,SOCK_STREAM,IPPROTO_IP); if(sock==INVALID_SOCKET) { //错误处理 }

3、套接字的绑定:将本地地址绑定到所创建的套接字上。(服务器端和客户端)

int bind( SOCKET s, const struct sockaddr FAR * name, int namelen ) s为已经创建的套接字。 name为socket地址结构,为sockaddr结构,如前面讨论的,我们一般使用sockaddr_in 结构,在使用再强制转换为sockaddr结构。 namelen为地址结构的长度。

用法:

sockaddr_in addr; addr. sin_family=AF_INET; addr. sin_port= htons(0); //保证字节顺序 addr. sin_addr.s_addr= inet_addr("192.1.8.84") int nResult=bind(s,(sockaddr*)&addr,sizeof(sockaddr)); if(nResult==SOCKET_ERROR) { //错误处理 }

4、 套接字的监听:(服务器端)

int listen(SOCKET s, int backlog )

s为一个已绑定但未联接的套接字。
backlog为指定正在等待联接的最大队列长度,这个参数非常重要,因为服务器一般可
以提供多个连接。
用法:

int nResult=listen(s,5) //最多5个连接 if(nResult==SOCKET_ERROR) { //错误处理 }

5、套接字等待连接::(服务器端)

SOCKET accept( SOCKET s, struct sockaddr FAR * addr, int FAR * addrlen )

s为处于监听模式的套接字。
sockaddr为接收成功后返回客户端的网络地址。
addrlen为网络地址的长度。

用法:

sockaddr_in addr; SOCKET s_d=accept(s,(sockaddr*)&addr,sizeof(sockaddr)); if(s==INVALID_SOCKET) { //错误处理 }

6、套接字的连结:将两个套接字连结起来准备通信。(客户端)

int connect(SOCKET s, const struct sockaddr FAR * name, int namelen )

s为欲连结的已创建的套接字。
name为欲连结的socket地址。
namelen为socket地址的结构的长度。

用法:

sockaddr_in addr; addr. sin_family=AF_INET; addr. sin_port=htons(0); //保证字节顺序 addr. sin_addr.s_addr= htonl(INADDR_ANY) //保证字节顺序 int nResult=connect(s,(sockaddr*)&addr,sizeof(sockaddr)); if(nResult==SOCKET_ERROR) { //错误处理 }

7、套接字发送数据:(服务器端和客户端)

int send(SOCKET s, const char FAR * buf, int len, int flags )

s为服务器端监听的套接字。
buf为欲发送数据缓冲区的指针。
len为发送数据缓冲区的长度。
flags为数据发送标记。
返回值为发送数据的字符数。

◆这里讲一下这个发送标记,下面8中讨论的接收标记也一样:

flag取值必须为0或者如下定义的组合:0表示没有特殊行为。

#define MSG_OOB 0x1
#define MSG_PEEK 0x2
#define MSG_DONTROUTE 0x4
MSG_OOB表示数据应该带外发送,所谓带外数据就是TCP紧急数据。
MSG_PEEK表示使有用的数据复制到缓冲区内,但并不从系统缓冲区内删除。
MSG_DONTROUTE表示不要将包路由出去。

用法:

char buf[]="xiaojin"; int nResult=send(s,buf,strlen(buf)); if(nResult==SOCKET_ERROR) { //错误处理 }

8、 套接字的数据接收:(客户端)

int recv( SOCKET s, char FAR * buf, int len, int flags )

s为准备接收数据的套接字。
buf为准备接收数据的缓冲区。
len为准备接收数据缓冲区的大小。
flags为数据接收标记。
返回值为接收的数据的字符数。

用法:

char mess[1000]; int nResult =recv(s,mess,1000,0); if(nResult==SOCKET_ERROR) { //错误处理 }

9、中断套接字连接:通知服务器端或客户端停止接收和发送数据。(服务器端和客户端)

int shutdown(SOCKET s, int how)

s为欲中断连接的套接字。
How为描述禁止哪些操作,取值为:SD_RECEIVE、SD_SEND、SD_BOTH。

#define SD_RECEIVE 0x00 #define SD_SEND 0x01 #define SD_BOTH 0x02

用法:

int nResult= shutdown(s,SD_BOTH); if(nResult==SOCKET_ERROR) { //错误处理 }

10、 关闭套接字:释放所占有的资源。(服务器端和客户端)

int closesocket( SOCKET s )

s为欲关闭的套接字。

用法:

int nResult=closesocket(s); if(nResult==SOCKET_ERROR) { //错误处理 }


 三、典型过程图

3.1 面向连接的套接字的系统调用时序图

Windows Socket 套接字编程原理

3.2 无连接协议的套接字调用时序图

Windows Socket 套接字编程原理

3.3 面向连接的应用程序流程图

Windows Socket 套接字编程原理

 四、其他相关概念

与socket有关的一些函数介绍

1、读取当前错误值:每次发生错误时,如果要对具体问题进行处理,那么就应该调用这个函数取得错误代码。

int WSAGetLastError(void ); #define h_errno WSAGetLastError()

错误值请自己阅读Winsock2.h。

2、将主机的unsigned long值转换为网络字节顺序(32位):为什么要这样做呢?因为不同的计算机使用不同的字节顺序存储数据。因此任何从Winsock函数对IP地址和端口号的引用和传给Winsock函数的IP地址和端口号均时按照网络顺序组织的。

u_long htonl(u_long hostlong); 举例:htonl(0)=0 htonl(80)= 1342177280

3、将unsigned long数从网络字节顺序转换位主机字节顺序,是上面函数的逆函数。

u_long ntohl(u_long netlong); 举例:ntohl(0)=0 ntohl(1342177280)= 80

4、将主机的unsigned short值转换为网络字节顺序(16位):原因同2:

u_short htons(u_short hostshort); 举例:htonl(0)=0 htonl(80)= 20480

5、将unsigned short数从网络字节顺序转换位主机字节顺序,是上面函数的逆函数。

u_short ntohs(u_short netshort); 举例:ntohs(0)=0 ntohsl(20480)= 80

6、将用点分割的IP地址转换位一个in_addr结构的地址,这个结构的定义见笔记(一),实际上就是一个unsigned long值。计算机内部处理IP地址可是不认识如192.1.8.84之类的数据。

unsigned long inet_addr( const char FAR * cp ); 举例:inet_addr("192.1.8.84")=1409810880 inet_addr("127.0.0.1")= 16777343

如果发生错误,函数返回INADDR_NONE值。

7、将网络地址转换位用点分割的IP地址,是上面函数的逆函数。

char FAR * inet_ntoa( struct in_addr in ); 举例:char * ipaddr=NULL; char addr[20]; in_addr inaddr; inaddr. s_addr=16777343; ipaddr= inet_ntoa(inaddr); strcpy(addr,ipaddr);

这样addr的值就变为127.0.0.1。
注意意不要修改返回值或者进行释放动作。如果函数失败就会返回NULL值。

8、获取套接字的本地地址结构:

int getsockname(SOCKET s, struct sockaddr FAR * name, int FAR * namelen ); s为套接字 name为函数调用后获得的地址值 namelen为缓冲区的大小。

9、获取与套接字相连的端地址结构:

int getpeername(SOCKET s, struct sockaddr FAR * name, int FAR * namelen ); s为套接字 name为函数调用后获得的端地址值 namelen为缓冲区的大小。

10、获取计算机名:

int gethostname( char FAR * name, int namelen ); name是存放计算机名的缓冲区 namelen是缓冲区的大小 用法: char szName[255]; memset(szName,0,255); if(gethostname(szName,255)==SOCKET_ERROR) { //错误处理 } 返回值为:szNmae="xiaojin"

11、根据计算机名获取主机地址:

struct hostent FAR * gethostbyname( const char FAR * name ); name为计算机名。 用法: hostent * host; char* ip; host= gethostbyname("xiaojin"); if(host->h_addr_list[0]) { struct in_addr addr; memmove(&addr, host->h_addr_list[0],4); //获得标准IP地址 ip=inet_ ntoa (addr); } 返回值为:hostent->h_name="xiaojin" hostent->h_addrtype=2 //AF_INET hostent->length=4 ip="127.0.0.1"

 Winsock 的I/O操作:

1、 两种I/O模式

  • 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序。套接字 默认为阻塞模式。可以通过多线程技术进行处理。
  • 非阻塞模式:执行I/O操作时,Winsock函数会返回并交出控制权。这种模式使用 起来比较复杂,因为函数在没有运行完成就进行返回,会不断地返回 WSAEWOULDBLOCK错误。但功能强大。

为了解决这个问题,提出了进行I/O操作的一些I/O模型,下面介绍最常见的三种:

2、select模型:

  通过调用select函数可以确定一个或多个套接字的状态,判断套接字上是否有数据,或
者能否向一个套接字写入数据。

int select( int nfds, fd_set FAR * readfds, fd_set FAR * writefds,  fd_set FAR *exceptfds, const struct timeval FAR * timeout );

◆先来看看涉及到的结构的定义:
a、 d_set结构:

#define FD_SETSIZE 64? typedef struct fd_set { u_int fd_count; SOCKET fd_array[FD_SETSIZE]; } fd_set;

fd_count为已设定socket的数量
fd_array为socket列表,FD_SETSIZE为最大socket数量,建议不小于64。这是微软建
议的。

B、timeval结构:

struct timeval { long tv_sec; long tv_usec; };

tv_sec为时间的秒值。
tv_usec为时间的毫秒值。
这个结构主要是设置select()函数的等待值,如果将该结构设置为(0,0),则select()函数
会立即返回。

◆再来看看select函数各参数的作用:

  1. nfds:没有任何用处,主要用来进行系统兼容用,一般设置为0。
  2. readfds:等待可读性检查的套接字组。
  3. writefds;等待可写性检查的套接字组。
  4. exceptfds:等待错误检查的套接字组。
  5. timeout:超时时间。
  6. 函数失败的返回值:调用失败返回SOCKET_ERROR,超时返回0。

readfds、writefds、exceptfds三个变量至少有一个不为空,同时这个不为空的套接字组
种至少有一个socket,道理很简单,否则要select干什么呢。 举例:测试一个套接字是否可读:

fd_set fdread; //FD_ZERO定义 // #define FD_ZERO(set) (((fd_set FAR *)(set))->fd_count=0) FD_ZERO(&fdread); FD_SET(s,&fdread); //加入套接字,详细定义请看winsock2.h if(select(0,�read,NULL,NULL,NULL)>0 { //成功 if(FD_ISSET(s,&fread) //是否存在fread中,详细定义请看winsock2.h { //是可读的 } }

◆I/O操作函数:主要用于获取与套接字相关的操作参数。

int ioctlsocket(SOCKET s, long cmd, u_long FAR * argp );

s为I/O操作的套接字。
cmd为对套接字的操作命令。
argp为命令所带参数的指针。

常见的命令:

//确定套接字自动读入的数据量 #define FIONREAD _IOR(''''f'''', 127, u_long) //允许或禁止套接字的非阻塞模式,允许为非0,禁止为0 #define FIONBIO _IOW(''''f'''', 126, u_long) //确定是否所有带外数据都已被读入 #define SIOCATMARK _IOR(''''s'''', 7, u_long)

3、WSAAsynSelect模型:
WSAAsynSelect模型也是一个常用的异步I/O模型。应用程序可以在一个套接字上接收以
WINDOWS消息为基础的网络事件通知。该模型的实现方法是通过调用WSAAsynSelect函
数 自动将套接字设置为非阻塞模式,并向WINDOWS注册一个或多个网络时间,并提供一
个通知时使用的窗口句柄。当注册的事件发生时,对应的窗口将收到一个基于消息的通知。

int WSAAsyncSelect( SOCKET s, HWND hWnd, u_int wMsg, long lEvent);

s为需要事件通知的套接字
hWnd为接收消息的窗口句柄
wMsg为要接收的消息
lEvent为掩码,指定应用程序感兴趣的网络事件组合,主要如下:

#define FD_READ_BIT 0 #define FD_READ (1 << FD_READ_BIT) #define FD_WRITE_BIT 1 #define FD_WRITE (1 << FD_WRITE_BIT) #define FD_OOB_BIT 2 #define FD_OOB (1 << FD_OOB_BIT) #define FD_ACCEPT_BIT 3 #define FD_ACCEPT (1 << FD_ACCEPT_BIT) #define FD_CONNECT_BIT 4 #define FD_CONNECT (1 << FD_CONNECT_BIT) #define FD_CLOSE_BIT 5 #define FD_CLOSE (1 << FD_CLOSE_BIT)

用法:要接收读写通知:

int nResult= WSAAsyncSelect(s,hWnd,wMsg,FD_READ|FD_WRITE); if(nResult==SOCKET_ERROR) { //错误处理 }

取消通知:

int nResult= WSAAsyncSelect(s,hWnd,0,0);

当应用程序窗口hWnd收到消息时,wMsg.wParam参数标识了套接字,lParam的低字标明
了网络事件,高字则包含错误代码。

4、WSAEventSelect模型
WSAEventSelect模型类似WSAAsynSelect模型,但最主要的区别是网络事件发生时会被发
送到一个事件对象句柄,而不是发送到一个窗口。

使用步骤如下:
a、 创建事件对象来接收网络事件:

#define WSAEVENT HANDLE #define LPWSAEVENT LPHANDLE WSAEVENT WSACreateEvent( void );

该函数的返回值为一个事件对象句柄,它具有两种工作状态:已传信(signaled)和未传信
(nonsignaled)以及两种工作模式:人工重设(manual reset)和自动重设(auto reset)。默认未
未传信的工作状态和人工重设模式。

b、将事件对象与套接字关联,同时注册事件,使事件对象的工作状态从未传信转变未
已传信。

int WSAEventSelect( SOCKET s,WSAEVENT hEventObject,long lNetworkEvents );

s为套接字
hEventObject为刚才创建的事件对象句柄
lNetworkEvents为掩码,定义如上面所述

c、I/O处理后,设置事件对象为未传信

BOOL WSAResetEvent( WSAEVENT hEvent );

Hevent为事件对象

成功返回TRUE,失败返回FALSE。

d、等待网络事件来触发事件句柄的工作状态:

DWORD WSAWaitForMultipleEvents( DWORD cEvents, const WSAEVENT FAR * lphEvents, BOOL fWaitAll, DWORD dwTimeout, BOOL fAlertable );

lpEvent为事件句柄数组的指针
cEvent为为事件句柄的数目,其最大值为WSA_MAXIMUM_WAIT_EVENTS 
fWaitAll指定等待类型:TRUE:当lphEvent数组重所有事件对象同时有信号时返回;
FALSE:任一事件有信号就返回。
dwTimeout为等待超时(毫秒)
fAlertable为指定函数返回时是否执行完成例程

对事件数组中的事件进行引用时,应该用WSAWaitForMultipleEvents的返回值,减去
预声明值WSA_WAIT_EVENT_0,得到具体的引用值。例如:

nIndex=WSAWaitForMultipleEvents(…); MyEvent=EventArray[Index- WSA_WAIT_EVENT_0];

e、判断网络事件类型:

int WSAEnumNetworkEvents( SOCKET s, WSAEVENT hEventObject, LPWSANETWORKEVENTS lpNetworkEvents );

s为套接字
hEventObject为需要重设的事件对象
lpNetworkEvents为记录网络事件和错误代码,其结构定义如下:

typedef struct _WSANETWORKEVENTS { long lNetworkEvents; int iErrorCode[FD_MAX_EVENTS]; } WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;

f、关闭事件对象句柄:

BOOL WSACloseEvent(WSAEVENT hEvent);

调用成功返回TRUE,否则返回FALSE。