https://segmentfault.com/a/1190000008850005?utm_source=tag-newest#articleHeader11
https://www.cnblogs.com/love-yh/p/7423301.html二叉树种类
1.二叉树的高度
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None class Solution(object):
def maxHeight(self, root):
if root==None:
return 0
leftheight=self.maxHeight(root.left)
rightheight=self.maxHeight(root.right)
if leftheight>=rightheight:
return leftheight+1
else:
return rightheight+1
2. 分层打印二叉树
class TreeNode:
def __init__(self,x):
self.val = x
self.left = None
self.right = None class Solution:
def printBinary(self, root):
queue = []
res = []
if root = None:
return []
queue.append(root)
while queue:
newnode = queue.pop(0)
res.append(newnode.val)
if(newnode.left):
queue.append(newnode.left)
if(newnode.right):
queue.append(newnode.right)
return res
class Solution:
# 返回二维列表[[1,2],[4,5]]
def Print(self, pRoot):
# write code here
result = []
nodeList = []
if pRoot == None:
return result
nodeList.append(pRoot)
while nodeList:
result_layer = []
nextLayernodeList = []
for node in nodeList:
result_layer.append(node.val)
if node.left:
nextLayernodeList.append(node.left)
if node.right:
nextLayernodeList.append(node.right)
nodeList = nextLayernodeList
result.append(result_layer)
return result
3. 判断是否为平衡二叉树
class TreeNode():
def __init__(self,x):
self.val = x
self.left = None
self.right = None
class Solution:
def getDeepth(self,Root):
if Root is None:
return 0
nright = self.getDeepth(Root.right)
nleft = self.getDeepth(Root.left)
return max(nright,nleft)+1
def IsBalance_solution(self,pRoot):
if pRoot is None:
return True
right = self.getDeepth(pRoot.right)
left = self.getDeepth(pRoot.left)
if abs(right - left) > 1:
return False
return self.IsBalance_solution(pRoot.right) and self.IsBalance_solution(pRoot.left)
题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路:1. 前序遍历首位是根节点,找到根节点之后,根据中序遍历找到左右子树
2. 把找到的根节点从pre里删除,分别找到1中的左右子树, preleft preright vinleft vinright
3. 然后左右子树带入1中
/* function TreeNode(x) {
this.val = x;
this.left = null;
this.right = null;
} */
function reConstructBinaryTree(pre, vin)
{
var result = null;
if(pre.length>1) {
var root= pre[0];
var vinrootindex = vin.indexOf(root);
var vinleft = vin.slice(0,vinrootindex);
var vinright = vin.slice(vinrootindex+1,vin.length);
pre.shift();
var preleft = pre.slice(0,vinleft.length);
var preright = pre.slice(vinleft.length,pre.length);
result = {
val : root,
left : reConstructBinaryTree(preleft,vinleft),
right : reConstructBinaryTree(preright,vinright)
}
}
else if(pre.length===1) {
result={
val: pre[0],
left: null,
right: null
}
} return result;
}
4. 重建二叉树
-*- coding:utf-8 -*-
# 先序遍历特点:第一个值是根节点
# 中序遍历特点:根节点左边都是左子树,右边都是右子树
# 思路:
# 1.首先根据根节点a将中序遍历划分为两部分,左边为左子树,右边为右子树
# 2.使用递归,左右子树再次;;;
# 最后合成一棵树
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None class Solution:
def Re(self,pre,tin):
if not pre or not tin:
return None #要求返回的是二叉树,不是数组
root = TreeNode(pre.pop(0))
index = tin.index(root.val)
root.left = self.Re(pre, tin[:index])
root.right = self.Re(pre, tin[index+1:])
return root
5. 二叉树的镜像
#交换所有非页节点的子节点
-*- coding:utf -8 -*-
class TreeNode:
def __init__(self,x):
self.value = x
self.left = None
self.right = None
class Solution:
def Mirror(self,root):
if not root:
return root
root.left, root.right = root.right, root.left
self.Mirror(root.left)
self.Mirror(root.right)
return root