The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.
Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.
These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.
Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.
See this page for more
diagrams on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting.
Parameterizations
Let C(n, k)
denote the binomial
coefficient(n, k).
The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.
The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.
The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.
The Bernoulli distribution has probability of success p.
The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).
The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).
The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).
The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.
The normal distribution parameterized in terms of precision τ (τ = 1/σ2)
has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).
The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.
Posterior parameters
For each sampling distribution, assume we have data x1, x2,
…, xn.
If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.
If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.
If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.
If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).
If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).
If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.
If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).
If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.
References
A
compendium of conjugate priors by Daniel Fink.
See also Wikipedia’s article on conjugate
priors.
Conjugate prior relationships的更多相关文章
-
共轭先验(conjugate prior)
共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...
-
The Joys of Conjugate Priors
The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...
-
转:Conjugate prior-共轭先验的解释
Conjugate prior-共轭先验的解释 原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...
-
Gibbs sampling
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...
-
Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
-
[综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
-
PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
-
关于Beta分布、二项分布与Dirichlet分布、多项分布的关系
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...
-
[zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
随机推荐
-
IE下必须点击一下页面空白的地方才可以激活onchange事件
checkbox在IE下必须点击一下页面空白的地方才可以激活onchange事件. 解决办法把onchange换成onclick
-
z-index使用以及失效的处理方法
1.一般z-index的使用是在有两个重叠的标签,在一定的情况下控制其中一个在另一个的上方出现. 2.z-index值越大就越是在上层.z-index:9999:z-index元素的position属 ...
-
Android关闭系统锁屏
昨晚探索了一下Android系统内的目录,意外发现系统锁屏的数据库 使用adb shell进入系统根目录 adb shell su sqlite3 data/system/locksettings.d ...
-
【Java学习笔记之八】java二维数组及其多维数组的内存应用拓展延伸
多维数组声明 数据类型[][] 数组名称; 数据类型[] 数组名称[]; 数据类型数组名称[][]; 以上三种语法在声明二维数组时的功能是等价的.同理,声明三维数组时需要三对中括号,中括号的位置可以在 ...
-
201521123050 《Java程序设计》第10周学习总结
1. 本周学习总结 2. 书面作业 1.finally,题目4-2 1.1 截图你的提交结果(出现学号) 1.2 4-2中finally中捕获异常需要注意什么? 只有执行过try才会执行finally ...
-
node使用buffer生成图片
buffer是node里的一个模块,这个模块的出现是因为js没有阅读和操作二进制数据流而出现的 buffer是什么及作用? Buffer顾名思义叫缓冲区,用于存储速度不同步的设备或优先级不同的设备之间 ...
-
UVA 624 CD[【01背包】(输出路径)
<题目链接> 题目大意: 你要录制时间为N的带子,给你一张CD的不同时长的轨道,求总和不大于N的录制顺序 解题分析: 01背包问题,需要注意的是如何将路径输出. 由于dp时是会不断的将前面 ...
-
Spring源码分析(七)bean标签的解析及注册
摘要:本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 在上一篇中提到过Spring中的标签包括默认标签和自定义标签两种,而两种 ...
-
去掉cb中括号的匹配
Settings->Editor->General settings->Indent options->Brace completion``
-
Python学习札记(三十二) 面向对象编程 Object Oriented Program 3
参考:访问限制 NOTE 1.eg. #!/usr/bin/env python3 class Student(object): """docstring for Stu ...