win8下使用eclipse进行hadoop2.6.2开发

时间:2023-03-08 18:20:51
win8下使用eclipse进行hadoop2.6.2开发

最近在win平台下使用eclipse Mars做在远程linux上的hadoop2.6开发,出现很多问题,让人心力交瘁,在经过不懈努力后,终于解决了,让人欢欣雀跃。

1、安装JDK

在做hadoop2.6最好使用jdk7版本的,下载后安装。

2、下载eclipse

去http://www.eclipse.org/downloads/ 下载你需要的版本,我们这里下载的是win64位版。直接解压到目录中。进行简单设置,根据你的开发需要,选择jdk的版本

win8下使用eclipse进行hadoop2.6.2开发

win8下使用eclipse进行hadoop2.6.2开发

win8下使用eclipse进行hadoop2.6.2开发

3、安装Hadoop2.6.0-eclipse-plugin

去https://github.com/winghc/hadoop2x-eclipse-plugin,在下载zip包后,在release目录中,有hadoop-eclipse-plugin-2.6.0.jar可以直接使用,不用在行编译。如使用其他版本,请参考其他文档。直接将hadoop-eclipse-plugin-2.6.0.jar复制到eclipse的plugins目录中即可。

4、安装Hadoop windows插件

包括hadoop.dll、winutils.exe。下载地址:https://github.com/srccodes/hadoop-common-2.2.0-bin

下载解压后,还需要配置环境变量,HADOOP_HOME = 解压目录,Path后增加 %HADOOP_HOME%\bin;

5、在eclipse中设置hadoop开发插件

打开eclipse,设置好工作区域后,点击

win8下使用eclipse进行hadoop2.6.2开发

选择下图中红色标记,

win8下使用eclipse进行hadoop2.6.2开发

在eclipse的工作区间中,左上角和下方会出现图中标记,如果出现,则说明前几步你都正确了。接下来对插件进行设置

win8下使用eclipse进行hadoop2.6.2开发

win8下使用eclipse进行hadoop2.6.2开发

6、设置hadoop插件

在eclipse菜单中选择,window - preferences,打开设置菜单

win8下使用eclipse进行hadoop2.6.2开发

这里所用的hadoop版本需要和你linux上安装的hadoop版本一致,开发的时候插件会在这个目录中获取需要的开发包。设置完成后保存。

注:需要用二进制包,不用修改配置文件

win8下使用eclipse进行hadoop2.6.2开发

win8下使用eclipse进行hadoop2.6.2开发

设置完成后,就可以在eclipse的右上角看到你的hadoop的目录结构了。

win8下使用eclipse进行hadoop2.6.2开发

7、上面只是点毛毛雨,下面才真正开始重点了,如何进行开发,我们使用hadoop的wordcount来做测试。

创建mr项目

win8下使用eclipse进行hadoop2.6.2开发

设置项目名称

win8下使用eclipse进行hadoop2.6.2开发

创建类

win8下使用eclipse进行hadoop2.6.2开发

设置类属性

win8下使用eclipse进行hadoop2.6.2开发

创建完成后,将hadoop-2.6.2-src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main\java\org\apache\hadoop\examples目录下的WordCount.java文件内容,copy到刚创建的文件中。

8、接下来创建配置环境

在项目中,再创建一个Source Folder,名字叫resources,把你集群里的hadoop配置文件(etc/hadoop)拷贝到这个目录中,包括log4j.properties、core-site.xml、hdfs-site.xml、mapred-site.xml、yarn-site.xml。这几个配置文件除log4j.properties外,其他的因个人需求不一样而不同,但必须包括以下内容。

core-site.xml

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://192.168.114.128:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/zkpk/hadoop_data/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://192.168.114.128:9000</value>
</property>
</configuration>

hdfs-site.xml

<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/zkpk/hadoop_data/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/zkpk/hadoop_data/dfs/data</value>
</property>
</configuration>

mapred-site.xml

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<description>远程开发必须</description>
</property>
<property>
<name>mapred.remote.os</name>
<value>Linux</value>
<description>远程开发必须</description>
</property>
<property>
<name>mapreduce.app-submission.cross-platform</name>
<value>true</value>
<description>远程开发必须</description>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>
/home/zkpk/hadoop-2.6.2/etc/hadoop,
/home/zkpk/hadoop-2.6.2/share/hadoop/common/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/common/lib/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/hdfs/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/hdfs/lib/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/mapreduce/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/mapreduce/lib/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/yarn/*,
/home/zkpk/hadoop-2.6.2/share/hadoop/yarn/lib/*
</value>
<description>远程开发必须,制定远程目录上</description>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>192.168.114.128:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>192.168.114.128:19888</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<description>远程开发必须</description>
</property>
<property>
<name>mapred.job.tracker</name>
<value>192.168.114.128:9001</value>
<description>远程开发必须</description>
</property>
</configuration>

yarn-site.xml

<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
<description>远程开发必须</description>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>192.168.114.128:8032</value>
</property>
</configuration>

以上完成后,即完成开发环境配置,接下来试试运行是否成功。

win8下使用eclipse进行hadoop2.6.2开发

win8下使用eclipse进行hadoop2.6.2开发

完成后,直接点击运行即可

win8下使用eclipse进行hadoop2.6.2开发

看结果,如下就恭喜你成功了

15/12/18 09:14:13 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
15/12/18 09:14:13 INFO client.RMProxy: Connecting to ResourceManager at /192.168.114.128:8032
15/12/18 09:14:14 WARN mapreduce.JobResourceUploader: No job jar file set. User classes may not be found. See Job or Job#setJar(String).
15/12/18 09:14:14 INFO input.FileInputFormat: Total input paths to process : 2
15/12/18 09:14:14 INFO mapreduce.JobSubmitter: number of splits:2
15/12/18 09:14:14 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1450342418109_0004
15/12/18 09:14:14 INFO mapred.YARNRunner: Job jar is not present. Not adding any jar to the list of resources.
15/12/18 09:14:14 INFO impl.YarnClientImpl: Submitted application application_1450342418109_0004
15/12/18 09:14:14 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1450342418109_0004/
15/12/18 09:14:14 INFO mapreduce.Job: Running job: job_1450342418109_0004
15/12/18 09:14:21 INFO mapreduce.Job: Job job_1450342418109_0004 running in uber mode : false
15/12/18 09:14:21 INFO mapreduce.Job: map 0% reduce 0%
15/12/18 09:14:31 INFO mapreduce.Job: map 100% reduce 0%
15/12/18 09:14:39 INFO mapreduce.Job: map 100% reduce 100%
15/12/18 09:14:40 INFO mapreduce.Job: Job job_1450342418109_0004 completed successfully
15/12/18 09:14:40 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=79
FILE: Number of bytes written=320590
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=268
HDFS: Number of bytes written=41
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=16220
Total time spent by all reduces in occupied slots (ms)=4519
Total time spent by all map tasks (ms)=16220
Total time spent by all reduce tasks (ms)=4519
Total vcore-seconds taken by all map tasks=16220
Total vcore-seconds taken by all reduce tasks=4519
Total megabyte-seconds taken by all map tasks=16609280
Total megabyte-seconds taken by all reduce tasks=4627456
Map-Reduce Framework
Map input records=2
Map output records=8
Map output bytes=82
Map output materialized bytes=85
Input split bytes=218
Combine input records=8
Combine output records=6
Reduce input groups=5
Reduce shuffle bytes=85
Reduce input records=6
Reduce output records=5
Spilled Records=12
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=385
CPU time spent (ms)=1660
Physical memory (bytes) snapshot=460673024
Virtual memory (bytes) snapshot=6179151872
Total committed heap usage (bytes)=259063808
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=50
File Output Format Counters
Bytes Written=41

错误解说:

1、WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).

INFO mapreduce.Job: Task Id : attempt_1450852806248_0029_m_000000_0, Status : FAILED
Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.mr.WordCount$TokenizerMapper not found

是由于没有jar上传到集群,所以mr的时候回出现找不到类的情况,需要再程序中增加以下语句

在mian函数的Configuration conf = new Configuration();后增加conf.set("mapred.jar", jar打包所在的地址);

例:conf.set("mapred.jar", "E:\\workspace\\WordCountTest\\bin\\org\\apache\\hadoop\\mr\\WordCountTest.jar");