-
问题描述:
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.给定 N,计算 F(N)。
示例 :
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1. -
问题分析:
由于计算任何一个第n(n >= 2)项的数都需要知道其前面两个数,即需要知道n-1和n-2是多少,然后两个相加得到结果,但是问题来了,要知道n-1,就要需要知道n-2,要知道n-2就需要知道n-3,会一直这样的循环递归下去,一直到第一个数,第二个,第三个.......再反推回来。 那就很明显了,大家第一时间想到的方法便是递归,就下来实现一下:
方法一:递归实现
public class Solution {
public int fib(int n) {
if(n <= 1){
return n;
}
return fib(n-1) + fib(n-2);
}
}
问题分析:
先看一下递归图:
由于很多数的计算都要重复很多次,效率并不高,时间复杂度达到了 O(2^n),是斐波那契数计算中 时间复杂度最大,最不可取的方法。
空间复杂度:O(n),堆栈中需要的空间与 N 成正比,堆栈会跟踪 fib(n) 的调用,随着堆栈的不断增长 如果没有足够的内存则会出现*Error异常。
注:定义为int型时,最大只能求到n = 46,f(46) = 1836311903, 而 f(47) = -1323752223,因为超出了int 型数值的最大范围。
-
算法改进:
使用递归的同时,使用记忆化方式存储已经计算过的数据,减少不必要的重复计算,可以使时间复杂度降到 O(N),同时空间复杂度也是O(N)。具体的实现是使用一个数组,把每次计算过的值都存储进去,当再次使用这个数的时候,直接返回,不需要再进行递归。
方法二:记忆化自底向上递归
public class Solution {
public int fib(int n) {
if(n <= 1){
return n;
}
int[] memo = new int[n+1];
memo[1] = 1;
for(int i = 2;i <= n; i++){
//自底向上填充数组,一直到需要的那个数
memo[i] = memo[i-1] + memo[i-2];
}
return memo[n];
}
}
方法三:使用第三方变量
class Solution {
public int fib(int N) {
if (N < 2) return N;
if (N == 2) return 1;
int temp = 1;
int result = 1;
for (int i = 3; i <= N ; i++) {
result= temp + result;
temp = result - temp;
}
return result;
}
}
时间复杂度瞬间降到O(1),这个我觉得应该是三个方法里面最简单最高效的。
-
最后:
限于水平有限,斐波那契数的实现还有很多种方法,不能一一列举,当其中大部分都有类似的思想。
水文中如有不准确或是错误之处,还望指出。谢谢~~~
下一篇:LeetCode.62——不同路径
LeetCode.509——斐波那契数的更多相关文章
-
Java实现 LeetCode 509 斐波那契数
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...
-
leetcode 509. 斐波那契数
问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
-
力扣(LeetCode) 509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...
-
【LeetCode】509. 斐波那契数
题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = ...
-
leetcode 509斐波那契数列
递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索 ...
-
LeetCode_509.斐波那契数
LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...
-
LeetCode(509. 斐波那数)
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
-
[Swift]LeetCode509. 斐波那契数 | Fibonacci Number
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...
-
UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
随机推荐
-
将普通工程转为mvn标准工程(main resources)
It is sometimes required to change the default source folder working on the java project. One best e ...
-
iOS开发项目之三 [ 自定义tabBarCtrl]
01 让tabBar的图片保持原样.图片渲染的处理 ctrl.tabBarItem.selectedImage = [[UIImage imageNamed:[NSString stringWithF ...
-
【转】Vim 常用命令总结
使用 Vim 的时间不长,但如今已经离不开熟悉的 Vim 编辑模式了. Vim 的学习曲线是非常陡的,一开始学习的时候,面对很多的操作命令要去记住,常常望而却步. 其实,只要记住一些常用的命令,加之在 ...
- 11个让你吃惊的Linux终端命令
-
Objective-c 内存管理
与 C 有一点类似,oc 需要使用 alloc 方法申请内存.不同的是,c 直接调用 free 函数来释放内存,而 oc 并不直接调用 dealloc 来释放.整个 oc 都使用对象引用,而且每一 ...
-
Java 8 文件操作(转)
我们知道在JDK6甚至之前的时候,我们想要读取一个文本文件也是非常麻烦的一件事,而现在他们都变得简单了, 这要归功于NIO2,我们先看看之前的做法: 读取一个文本文件 BufferedReader b ...
-
Alibaba, I&#39;m interested in you.
Working for Alibaba is an aspiration for some. For other it’s the possibility of lucrative stock opt ...
-
ubuntu下安装 java环境
步骤1:下载jdk 我选择的jdk版本文件: jdk-8u201-linux-x64.tar 官网下载链接 步骤2:创建单独的目录 sudo mkdir /usr/local/java 步骤3:将下载 ...
-
换了电脑如何使用hexo继续写博客
前言 我们知道,使用 Github+hexo 搭建一个个人博客确实需要花不少时间的,我们搭好博客后使用的挺好,但是如果我们有一天电脑突然坏了,或者换了系统,那么我们怎么使用 hexo 再发布文章到个人 ...
-
vue过滤动画
一.使用<transition name="fade"></transition>标签 name="fade", 是创建个fade的类名 ...