很多hadoop初学者估计都我一样,由于没有足够的机器资源,只能在虚拟机里弄一个linux安装hadoop的伪分布,然后在host机上win7里使用eclipse或Intellj idea来写代码测试,那么问题来了,win7下的eclipse或intellij idea如何远程提交map/reduce任务到远程hadoop,并断点调试?
一、准备工作
1.1 在win7中,找一个目录,解压hadoop-2.6.0,本文中是D:\yangjm\Code\study\hadoop\hadoop-2.6.0 (以下用$HADOOP_HOME表示)
1.2 在win7中添加几个环境变量
HADOOP_HOME=D:\yangjm\Code\study\hadoop\hadoop-2.6.0
HADOOP_BIN_PATH=%HADOOP_HOME%\bin
HADOOP_PREFIX=D:\yangjm\Code\study\hadoop\hadoop-2.6.0
另外,PATH变量在最后追加;%HADOOP_HOME%\bin
二、eclipse远程调试
1.1 下载hadoop-eclipse-plugin插件
hadoop-eclipse-plugin是一个专门用于eclipse的hadoop插件,可以直接在IDE环境中查看hdfs的目录和文件内容。其源代码托管于github上,官网地址是 https://github.com/winghc/hadoop2x-eclipse-plugin
有兴趣的可以自己下载源码编译,百度一下N多文章,但如果只是使用 https://github.com/winghc/hadoop2x-eclipse-plugin/tree/master/release%20这里已经提供了各种编译好的版本,直接用就行,将下载后的hadoop-eclipse-plugin-2.6.0.jar复制到eclipse/plugins目录下,然后重启eclipse就完事了
1.2 下载windows64位平台的hadoop2.6插件包(hadoop.dll,winutils.exe)
在hadoop2.6.0源码的hadoop-common-project\hadoop-common\src\main\winutils下,有一个vs.net工程,编译这个工程可以得到这一堆文件,输出的文件中,
hadoop.dll、winutils.exe 这二个最有用,将winutils.exe复制到$HADOOP_HOME\bin目录,将hadoop.dll复制到%windir%\system32目录 (主要是防止插件报各种莫名错误,比如空对象引用啥的)
注:如果不想编译,可直接下载编译好的文件 hadoop2.6(x64)V0.2.rar
1.3 配置hadoop-eclipse-plugin插件
启动eclipse,windows->show view->other
window->preferences->hadoop map/reduce 指定win7上的hadoop根目录(即:$HADOOP_HOME)
然后在Map/Reduce Locations 面板中,点击小象图标
添加一个Location
这个界面灰常重要,解释一下几个参数:
Location name 这里就是起个名字,随便起
Map/Reduce(V2) Master Host 这里就是虚拟机里hadoop master对应的IP地址,下面的端口对应 hdfs-site.xml里dfs.datanode.ipc.address属性所指定的端口
DFS Master Port: 这里的端口,对应core-site.xml里fs.defaultFS所指定的端口
最后的user name要跟虚拟机里运行hadoop的用户名一致,我是用hadoop身份安装运行hadoop 2.6.0的,所以这里填写hadoop,如果你是用root安装的,相应的改成root
这些参数指定好以后,点击Finish,eclipse就知道如何去连接hadoop了,一切顺利的话,在Project Explorer面板中,就能看到hdfs里的目录和文件了
可以在文件上右击,选择删除试下,通常第一次是不成功的,会提示一堆东西,大意是权限不足之类,原因是当前的win7登录用户不是虚拟机里hadoop的运行用户,解决办法有很多,比如你可以在win7上新建一个hadoop的管理员用户,然后切换成hadoop登录win7,再使用eclipse开发,但是这样太烦,最简单的办法:
hdfs-site.xml里添加
1
2
3
4
|
<property>
<name>dfs.permissions</name>
<value> false </value>
</property>
|
然后在虚拟机里,运行hadoop dfsadmin -safemode leave
保险起见,再来一个 hadoop fs -chmod 777 /
总而言之,就是彻底把hadoop的安全检测关掉(学习阶段不需要这些,正式生产上时,不要这么干),最后重启hadoop,再到eclipse里,重复刚才的删除文件操作试下,应该可以了。
1.4 创建WoldCount示例项目
新建一个项目,选择Map/Reduce Project
后面的Next就行了,然后放一上WodCount.java,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
package yjmyzz;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable( 1 );
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0 ;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2 ) {
System.err.println( "Usage: wordcount <in> [<in>...] <out>" );
System.exit( 2 );
}
Job job = Job.getInstance(conf, "word count" );
job.setJarByClass(WordCount. class );
job.setMapperClass(TokenizerMapper. class );
job.setCombinerClass(IntSumReducer. class );
job.setReducerClass(IntSumReducer. class );
job.setOutputKeyClass(Text. class );
job.setOutputValueClass(IntWritable. class );
for ( int i = 0 ; i < otherArgs.length - 1 ; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1 ]));
System.exit(job.waitForCompletion( true ) ? 0 : 1 );
}
}
|
然后再放一个log4j.properties,内容如下:(为了方便运行起来后,查看各种输出)
1
2
3
4
5
6
7
8
9
10
11
|
log4j.rootLogger=INFO, stdout
#log4j.logger.org.springframework=INFO
#log4j.logger.org.apache.activemq=INFO
#log4j.logger.org.apache.activemq.spring=WARN
#log4j.logger.org.apache.activemq.store.journal=INFO
#log4j.logger.org.activeio.journal=INFO
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} | %- 5 .5p | %- 16 .16t | %- 32 .32c{ 1 } | %- 32 .32C %4L | %m%n
|
最终的目录结构如下:
然后可以Run了,当然是不会成功的,因为没给WordCount输入参数,参考下图:
1.5 设置运行参数
因为WordCount是输入一个文件用于统计单词字,然后输出到另一个文件夹下,所以给二个参数,参考上图,在Program arguments里,输入
hdfs://172.28.20.xxx:9000/jimmy/input/README.txt
hdfs://172.28.20.xxx:9000/jimmy/output/
大家参考这个改一下(主要是把IP换成自己虚拟机里的IP),注意的是,如果input/READM.txt文件没有,请先手动上传,然后/output/ 必须是不存在的,否则程序运行到最后,发现目标目录存在,也会报错,这个弄完后,可以在适当的位置打个断点,终于可以调试了:
三、intellij idea 远程调试hadoop
3.1 创建一个maven的WordCount项目
pom文件如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
<? xml version = "1.0" encoding = "UTF-8" ?>
< modelVersion >4.0.0</ modelVersion >
< groupId >yjmyzz</ groupId >
< artifactId >mapreduce-helloworld</ artifactId >
< version >1.0-SNAPSHOT</ version >
< dependencies >
< dependency >
< groupId >org.apache.hadoop</ groupId >
< artifactId >hadoop-common</ artifactId >
< version >2.6.0</ version >
</ dependency >
< dependency >
< groupId >org.apache.hadoop</ groupId >
< artifactId >hadoop-mapreduce-client-jobclient</ artifactId >
< version >2.6.0</ version >
</ dependency >
< dependency >
< groupId >commons-cli</ groupId >
< artifactId >commons-cli</ artifactId >
< version >1.2</ version >
</ dependency >
</ dependencies >
< build >
< finalName >${project.artifactId}</ finalName >
</ build >
</ project >
|
项目结构如下:
项目上右击-》Open Module Settings 或按F12,打开模块属性
添加依赖的Libary引用
然后把$HADOOP_HOME下的对应包全导进来
导入的libary可以起个名称,比如hadoop2.6
3.2 设置运行参数
注意二个地方:
1是Program aguments,这里跟eclipes类似的做法,指定输入文件和输出文件夹
2是Working Directory,即工作目录,指定为$HADOOP_HOME所在目录
然后就可以调试了
intellij下唯一不爽的,由于没有类似eclipse的hadoop插件,每次运行完wordcount,下次再要运行时,只能手动命令行删除output目录,再行调试。为了解决这个问题,可以将WordCount代码改进一下,在运行前先删除output目录,见下面的代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
package yjmyzz;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable( 1 );
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0 ;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
/**
* 删除指定目录
*
* @param conf
* @param dirPath
* @throws IOException
*/
private static void deleteDir(Configuration conf, String dirPath) throws IOException {
FileSystem fs = FileSystem.get(conf);
Path targetPath = new Path(dirPath);
if (fs.exists(targetPath)) {
boolean delResult = fs.delete(targetPath, true );
if (delResult) {
System.out.println(targetPath + " has been deleted sucessfullly." );
} else {
System.out.println(targetPath + " deletion failed." );
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2 ) {
System.err.println( "Usage: wordcount <in> [<in>...] <out>" );
System.exit( 2 );
}
//先删除output目录
deleteDir(conf, otherArgs[otherArgs.length - 1 ]);
Job job = Job.getInstance(conf, "word count" );
job.setJarByClass(WordCount. class );
job.setMapperClass(TokenizerMapper. class );
job.setCombinerClass(IntSumReducer. class );
job.setReducerClass(IntSumReducer. class );
job.setOutputKeyClass(Text. class );
job.setOutputValueClass(IntWritable. class );
for ( int i = 0 ; i < otherArgs.length - 1 ; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1 ]));
System.exit(job.waitForCompletion( true ) ? 0 : 1 );
}
}
|
但是光这样还不够,在IDE环境中运行时,IDE需要知道去连哪一个hdfs实例(就好象在db开发中,需要在配置xml中指定DataSource一样的道理),将$HADOOP_HOME\etc\hadoop下的core-site.xml,复制到resouces目录下,类似下面这样:
里面的内容如下:
1
2
3
4
5
6
7
8
|
<? xml version = "1.0" encoding = "UTF-8" ?>
<? xml-stylesheet type = "text/xsl" href = "configuration.xsl" ?>
< configuration >
< property >
< name >fs.defaultFS</ name >
</ property >
</ configuration >
|
上面的IP换成虚拟机里的IP即可。
原文链接:http://www.cnblogs.com/yjmyzz/p/how-to-remote-debug-hadoop-with-eclipse-and-intellij-idea.html