sampling method
背景
在贝叶斯框架下,利用后验分布对参数进行估计,也即
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNDQ5MTAtOTk1MTM1NDg2LnBuZw%3D%3D.png?w=700)
其中
(1)是参数的先验分布。
(2)是似然分布,数据集
的生成联合概率
(3)是参数的后验分布。
通常分布很复杂,所以可以采用sampling方法从
中采样样本,表示后验分布。如计算参数的期望。
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNDY4MzgtNjg5MDgyMDgwLnBuZw%3D%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNDcxNjctMjgxODQ1Njg1LnBuZw%3D%3D.png?w=700)
其中是从
中抽取的一组样本。
MCMC
马尔科夫蒙特卡洛方法(MCMC)是最常用的采样技术。其关键是通过构造平稳分布为的马尔科夫链,则此时产出的样本
近似服从分布
。
平稳分布
设
(1)马尔科夫链的状态转移概率为
。
(2)在时刻状态的分布为
若此时
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNDk2OTgtMzM1MDIzOTEucG5n.png?w=700)
则马尔科夫链满足细致平稳条件,是该马尔科夫链的平稳分布。
Metropolis-Hasting算法
- initialize
- for i = 0 to N - 1
if
else:
证明:
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTE0MzMtMTc2MDE0NjkxMi5wbmc%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTE3MDUtMTAxMDE0ODY1Ni5wbmc%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTE5NTYtMTIyMTY5NzkzLnBuZw%3D%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTIyMjMtMTIyNjEwODAxMi5wbmc%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTI0NDgtOTkzNjY3OTgxLnBuZw%3D%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTI2ODItMTI2NzY3NzIxMi5wbmc%3D.png?w=700)
因此,满足细致平稳条件,且服从
MH算法关键是选择,虽然理论上可以随便选。
Gibbs采样算法
gibbs主要用于对多维分布采样
initialize
证明
由采样流程:
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTQ4MTEtMTI0NTg1NjU3My5wbmc%3D.png?w=700)
则代入MH
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTUxMDEtMTcxMjU4NDE5LnBuZw%3D%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTUzNDAtMTc3MDMyNDQzMC5wbmc%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTU2MDctMTczMjc3OTg0Ny5wbmc%3D.png?w=700)
![sampling method sampling method](https://image.shishitao.com:8440/aHR0cHM6Ly9pbWcyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvNDk0NzQwLzIwMTgwOS80OTQ3NDAtMjAxODA5MTQyMzEwNTU4NDQtMTA4MjE5MjMxMS5wbmc%3D.png?w=700)
所以,gibbs是MH的一种特殊形式。