FZU Problem 1686 神龙的难题 重复覆盖

时间:2023-03-08 18:17:27

题目链接

给出大矩形的长宽, 矩形里面有1,0两个值, 给出小矩形的长宽, 求用最少的小矩形覆盖所有的1.

重复覆盖的模板题。

 #include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, a, n) for(int i = a; i<n; i++)
#define ull unsigned long long
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = ;
const int maxNode = ;
struct DLX {
int L[maxNode], R[maxNode], U[maxNode], D[maxNode], row[maxNode], col[maxNode];
int S[maxn], H[maxn], deep, ans[maxn], sz, n, m, k, n1, m1;
int g[][];
void remove(int c) {
for(int i = D[c]; i!=c; i = D[i]) {
L[R[i]] = L[i];
R[L[i]] = R[i];
}
}
void resume(int c) {
for(int i = U[c]; i!=c; i = U[i]) {
L[R[i]] = i;
R[L[i]] = i;
}
}
int h() {
int cnt = ;
int vis[];
mem(vis);
for(int i = R[]; i!=; i = R[i]) {
if(!vis[i]) {
cnt++;
vis[i] = ;
for(int j = D[i]; j!=i; j = D[j]) {
for(int k = R[j]; k!=j; k = R[k]) {
vis[col[k]] = ;
}
}
}
}
return cnt;
}
void dfs(int d) {
if(d+h()>=deep)
return ;
if(R[] == ) {
deep = min(deep, d);
return ;
}
int c = R[];
for(int i = R[]; i!=; i = R[i])
if(S[c]>S[i])
c = i;
for(int i = D[c]; i!=c; i = D[i]) {
remove(i);
for(int j = R[i]; j!=i; j = R[j])
remove(j);
dfs(d+);
for(int j = L[i]; j!=i; j = L[j])
resume(j);
resume(i);
}
return ;
}
void add(int r, int c) {
sz++;
row[sz] = r;
col[sz] = c;
S[c]++;
U[sz] = U[c];
D[sz] = c;
D[U[c]] = sz;
U[c] = sz;
if(~H[r]) {
R[sz] = H[r];
L[sz] = L[H[r]];
L[R[sz]] = sz;
R[L[sz]] = sz;
} else {
H[r] = L[sz] = R[sz] = sz;
}
}
void init(){
mem1(H);
for(int i = ; i<=n; i++) {
R[i] = i+;
L[i] = i-;
U[i] = i;
D[i] = i;
}
deep = inf;
mem(S);
R[n] = ;
L[] = n;
sz = n;
}
void solve() {
mem(g);
int cnt = , x;
for(int i = ; i<n; i++) {
for(int j = ; j<m; j++) {
scanf("%d", &x);
if(x)
g[i][j] = ++cnt;
else
g[i][j] = ;
}
}
scanf("%d%d", &n1, &m1);
int r = , tmp = n;
n = cnt;
init();
for(int i = ; i<tmp-n1+; i++) {
for(int j = ; j<m-m1+; j++) {
r++;
for(int k1 = i; k1<min(i+n1, tmp); k1++) {
for(int k2 = j; k2<min(j+m1, m); k2++) {
if(g[k1][k2]) {
add(r, g[k1][k2]);
}
}
}
}
}
dfs();
printf("%d\n", deep);
}
}dlx;
int main()
{
while(scanf("%d%d", &dlx.n, &dlx.m)!=EOF) {
dlx.solve();
}
return ;
}