hdu-3397 Sequence operation 线段树多种标记

时间:2025-01-11 13:05:14

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3397

题目大意:

0 a b表示a-b区间置为0

1 a b表示a-b区间置为1

2 a b表示a-b区间中的0变成1,1变成0

3 a b表示a-b区间中的1的数目

4 a b表示a-b区间中最长连续1的长度

解题思路:

线段树多种标记。

需要处理的东西比较多:

hdu-3397 Sequence operation 线段树多种标记

做题的时候发现一个问题:

我的宏定义Max不可以用于函数,尤其是递归函数,这样会使得同一函数重复调用好几遍,递归函数的话更会超时。

 #include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} typedef long long ll;
const int maxn = + ;
const int MOD = ;//const引用更快,宏定义也更快 struct node
{
int l, r;//左右区间
int ls0, rs0, ms0;//左连续的0,右连续的0,区间最大连续的0
int ls1, rs1, ms1;//左连续的1,右连续的1,区间最大连续的1
int sum0, sum1;//区间0 1数目
int lazy, Xor;//懒惰标记和异或标记
}tree[maxn << ];
int a[maxn];
void pushup(int o)
{
if(tree[o].l == tree[o].r)return;//叶子节点直接返回
//根据子节点的信息,更新父节点信息 //更新0:
int lc = lson, rc = rson;
tree[o].ls0 = tree[lc].ls0;
tree[o].rs0 = tree[rc].rs0;
if(tree[lc].ls0 == tree[lc].r - tree[lc].l + )
tree[o].ls0 += tree[rc].ls0;//左节点左连续的0为区间长度 那么根节点左连续的0需要再加上右节点左连续的0
if(tree[rc].rs0 == tree[rc].r - tree[rc].l + )
tree[o].rs0 += tree[lc].rs0;
tree[o].ms0 = Max(Max(tree[lc].ms0, tree[rc].ms0), tree[lc].rs0 + tree[rc].ls0);//最大连续0 = Max(左节点最大连续0, 右节点最大连续0,中间最大连续0)
tree[o].sum0 = tree[lc].sum0 + tree[rc].sum0;
//更新1
tree[o].ls1 = tree[lc].ls1;
tree[o].rs1 = tree[rc].rs1;
if(tree[lc].ls1 == tree[lc].r - tree[lc].l + )
tree[o].ls1 += tree[rc].ls1;//左节点左连续的0为区间长度 那么根节点左连续的0需要再加上右节点左连续的0
if(tree[rc].rs1 == tree[rc].r - tree[rc].l + )
tree[o].rs1 += tree[lc].rs1;
tree[o].ms1 = Max(Max(tree[lc].ms1, tree[rc].ms1), tree[lc].rs1 + tree[rc].ls1);//最大连续0 = Max(左节点最大连续0, 右节点最大连续0,中间最大连续0)
tree[o].sum1 = tree[lc].sum1 + tree[rc].sum1;
}
void XOR(int o)
{
swap(tree[o].ls0, tree[o].ls1);
swap(tree[o].rs0, tree[o].rs1);
swap(tree[o].ms0, tree[o].ms1);
swap(tree[o].sum0, tree[o].sum1);
}
void pushdown(int o)//标记下传
{
if(tree[o].l == tree[o].r)return;
if(tree[o].lazy != -)//区间覆盖0或者1
{
int lc = lson, rc = rson, len = tree[o].r - tree[o].l + ;
tree[lc].lazy = tree[rc].lazy = tree[o].lazy;
tree[lc].Xor = tree[rc].Xor = ; //左节点长度为(len+1) / 2 右节点长度为len/2
//左
tree[lc].ls0 = tree[lc].rs0 = tree[lc].ms0 = tree[o].lazy ? : (len + ) / ;
tree[lc].ls1 = tree[lc].rs1 = tree[lc].ms1 = tree[o].lazy ? (len + ) / : ;
tree[lc].sum0 = tree[o].lazy ? : (len + ) / ;
tree[lc].sum1 = tree[o].lazy ? (len + ) / : ;
//右
tree[rc].ls0 = tree[rc].rs0 = tree[rc].ms0 = tree[o].lazy ? : (len) / ;
tree[rc].ls1 = tree[rc].rs1 = tree[rc].ms1 = tree[o].lazy ? (len) / : ;
tree[rc].sum0 = tree[o].lazy ? : (len) / ;
tree[rc].sum1 = tree[o].lazy ? (len) / : ; tree[o].lazy = -;//清除标记
}
if(tree[o].Xor)
{
tree[o].Xor = ;
tree[lson].Xor ^= ;
tree[rson].Xor ^= ;
XOR(lson), XOR(rson);
}
}
void build(int o, int l, int r)
{
tree[o].l = l, tree[o].r = r, tree[o].lazy = -, tree[o].Xor = ;
if(l == r)
{
tree[o].ls0 = tree[o].rs0 = tree[o].ms0 = (a[l] == );
tree[o].ls1 = tree[o].rs1 = tree[o].ms1 = (a[l] == );
tree[o].sum1 = (a[l] == );
tree[o].sum0 = (a[l] == );
return;
}
int m = MID(l, r);
build(lson, l, m);
build(rson, m + , r);
pushup(o);
}
int flag;//标记类型
int ql, qr;
void update(int o)
{
pushdown(o);
if(ql <= tree[o].l && qr >= tree[o].r)
{
if(flag == )
{
tree[o].Xor = ;
XOR(o);
}
else
{
int len = tree[o].r - tree[o].l + ;
tree[o].lazy = flag;
tree[o].ls0 = tree[o].rs0 = tree[o].ms0 = flag ? : len;
tree[o].ls1 = tree[o].rs1 = tree[o].ms1 = flag ? len : ;
tree[o].sum0 = flag ? : len;
tree[o].sum1 = flag ? len : ;
}
}
else
{
int m = MID(tree[o].l, tree[o].r);
if(ql <= m)update(lson);
if(qr > m)update(rson);
pushup(o);
}
} int query(int o)
{
pushdown(o);
if(ql <= tree[o].l && qr >= tree[o].r)
{
if(flag == )return tree[o].sum1;
else return tree[o].ms1;
}
else
{
if(qr <= tree[lson].r)return query(lson);
if(ql >= tree[rson].l)return query(rson);
if(flag == )return query(lson) + query(rson);
int ans1 = Min(tree[lson].rs1, tree[lson].r - ql + ) + Min(tree[rson].ls1, qr - tree[rson].l + );
int ans2 = max(query(lson), query(rson));//用宏定义会超时,因为一直在递归
return Max(ans1, ans2);
}
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++)scanf("%d", &a[i]);
build(, , n);
while(m--)
{
scanf("%d%d%d", &flag, &ql, &qr);
ql++, qr++;
if(flag < )update();
else printf("%d\n", query());
}
}
return ;
}