c#中override重写和new隐藏

时间:2023-03-08 18:13:23

最近学习c#,昨晚看书看到多态。由于个人本身是从事java开发,于是拿来做对比便是自然的。

进入主题吧。

c#中,子类要重写基类的方法,必须要基类声明中带有virtual关键字方法或者带有abstract关键字的抽象方法,然后子类中重写该方法时使用override关键字。

例如:

 class A
{
private String name;
public String Name
{
get
{
return name;
}
set
{
name = value;
}
} public A(String name)
{
this.name = name;
} public virtual String Test()
{
return name;
}
} class B : A
{
private int age;
public B(String name,int age)
: base(name)
{
this.age = age;
}
public override string Test()
{
return this.Name + ":" + age;
}
}

对于带有关键字abstract的抽象方法,子类中必须要重写,这与java中都是一样的。
但是在java中,子类重写基类的普通方法,只需要与父类的方法声明一致,就会重写父类的方法。

重写之后,在多态上的表现便会和大家期望的一致,调用子类重写的方法,而不再是调用父类的方法了。

 static void Main()
{
A c1 = new A("Tom");
System.Console.WriteLine( c1.Test());
A c2 = new B("Jerry",);
System.Console.WriteLine(c2.Test());
}

会发现后台输出的是aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAJIAAAAkCAIAAADtivSxAAADI0lEQVRoge2b61qiQBiAvaw9tR3c3dyuMUp7RBRFgfnmwGmge7CyFEyvZH9gPa0cJLc1yHmf7wd8wDDO64wwSG1A0ICgPo7DfIjC+lmj9kqCIEhmsnht4duRdaIiFfiXY3fEgMDKHNlem2DX9GNhBPUJUrF5L7RVgpUzjFRsxtpOfgttpaePkQqoB6gHpgpCW0Xomug5FMOczMKj08Z7XUcIitLVkaIjZYQ6I9QZmZNpePirEXt6Fia0lQ5ZA1mDtgbtAbQ1dDsND36sBknRz8pLS4WWCq0etFRo9tDNffjtJE9b6sgpBtVdc9mBi1Wgiw4aT8IvR5naXmZSl9dGV8H/4kIGSQapjSQZSTIa34WfvwttpUdqg9SG86cY30WfDoS20iPJWGpjqQ3nMkgyjO8i0dsqQFPBlx3c7OCmgi8VuJlE8W9b1vVFaj5/VfD2XPXwKlS4UuH2Pvp6LGZJSo88xPIQy0OQNZCHcDcND+pCW+lRDKIYpGtgRcddA09m0eFPoa309IEMgPQBx/EQRkenQlvp0Qh5jgHBD/PouCG0lZ4ho0NGNUY0hjWGp/NIPLipALpFdYvoFhkxMmJkOo/qQlv50R0ax8imI5tOH+cv/5SQdfe2e4rcR757JXeH4TDDpnHoFpn9ra1WjnvnjbMzqasfGcNmT0F1i5ZBW/4sTP7yvmgzHct0mOlQ06GGs1lbzuRWkJiQzMqn7pZaWpLUA1Nr9ZExXct0LcNhccwWedo2tnUt0egb88micsg56avKqTzIs5BrmS4zXWY6LFzM62eN/PZN/Wq/zKQekppPLueQ3G2tJnukDTwbPBu5VhxFtKWWk7WpSD7nG5Bfztqee6cNPBt5NnLtcPFYUFtqWyfL32g6pw+lFrJFHT4gmNuYO8Bt4DZ4K221rZ63Fdx5jSJtHSTI2lTsQ1cf7DvAHcwd7DnYs6Pl4y7fAdivtn5DiO9i38XcwdwGviNt+9g/3hYaeCtzvou5Ey0X4o2bCsACTn2P+h7xPeJ7Qls1YNecBpwGnPic+F60XAptFYBdcxZwFnAaeCTg8+VSPLgpP38A4PSllwNe2kQAAAAASUVORK5CYII=" alt="" />

到这里,除了写法上比java多了两个关键字,其他都是一样的,很好理解。但是在使用new隐藏父类方法的时候,就稍微有点晕了。

 class C : A
{
public String Code { set; get; }
public C(String name)
: base(name)
{
this.Code = "";
} public new String Test()
{
return this.Name + ":" + this.Code;
} }

如上,使用new关键字隐藏父类的Test方法,这里,隐藏父类方法,不像重写那么严格,关键字可以与父类不同,甚至连返回类型也可以不同,但是方法名和参数必须一致。

运行代码

 static void Main()
{
System.Console.WriteLine("这是main方法");
A c1 = new A("Tom");
System.Console.WriteLine( c1.Test());
B c2 = new B("Jerry",);
System.Console.WriteLine(c2.Test());
C c3 = new C("Anlex");
System.Console.WriteLine(c3.Test());
}

会发现结果aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAANQAAAB2CAIAAAA/aCqqAAAYzElEQVR4nO2deXva2KGH/bHuZPOW2GQ+SXt725nOZHUcL/GOMTuIVaxCIAkhtABi320DtsEr3mMnzrSddpb2C9w/BMSxDXEcm0nb8z6/x484OpwjcV6ODJLlDgfOOgjWgbNOQgjjIBiHl3ESjMNLO4WQNOKlEZJ2+WiXj0EpxkUxqJ/10BzGBAg2SAZ4X4inw2EmGg3EY8FEgk8nI5lUNJuKZdPxXDqRyyTy2WQuk8hlE7lsspZMMp9J5rOpfDY9n03la0nnM0JSuVqStaRryaYSp5LMCoXpRC6dFPrKZRLCU/KZRC4TryeaSUUyyXAqwSfjfDIeSsZCiVgoHg0mhIVYKBELJWLBeCQYjwZiES4WYSM8E+HpcNDPB6gg5wtwvgBHhTh/KODnA34+4A+HmAjPRMNsLMzGwmw8zMYjbDxMR3h/mKf4gC/EkUGWCDAESxOcn+AYb4Alg5w3yHqDHMGxOMdhLOumGZePcXj9dsJvwygrRlk8PovbB6M+GPWZXF4jUovBSRidhBEhTCgBuwnYQ1gx3IrjNgK3E5jdizm8mJ3EHCTmIHEHidtJ3O7FrQRmxTCrB4M9uBnFTShuRHAjghsQ3IDgRgQ3OnGDEzc4Cb2T0DuE4EKMCG5CcdiNWzDMimNWArMRmN2L2UnMTmIOL273YjYCsxIeK47CHpcJdRoRh95h1dktOodV77DqnVYjYje6HCYUgT0uGENhDO2weVibh7Vj7+PAmVOh7TjtIN7H6aWdXgYhGSfJID7WRbFuP4czQYILksEQFeKZcJiNRgOJaCgZCyVjfDIWTsbDqUQ4lQinkuFUIpxM1B8mwqlEJJWIpBKxdDKWSkZTCSGRVDySikfriaTi4WQ8nBASCyeifCLKx6N8PMononwiGhJKErFakjE+GQ+n4uFUgk/FQ8k4n4qHkrFAPMrFwmyEZ8IhJhz0h4M0H/QLCQX9oQAVClBBjgpyZJAlA6yXpQnWj9MU5vd5KBL1eVGSQEkc9XlRn9dNkW6/D6MpjPUTLO0NMGSQJYMsGeLIIIsHGIylPSzlpn2o3+uiCITEnSSO+AgXRaI06fL7XH4fQlFO0mfzklaMNKNeg5PQOXDIhmmtmMaKqWGPGnYrzW6FEVUYUIUBldejMKEq2KWxuLQ2F+RAdE6nAXEa0FqMqNPodhrdTiPqNKJOg8updzohh1Njc6qtTjWMKM2IwoTIDbUo6gsyAyLVI1IdItXXIjcgChOihhGNzQk5nDqnU484Da6zvRhQh8Hl0CM2yGHR2GCVxagw6RUGSGHSKcx6pdmggg1qq0ljgyGHBXJaIaetw+JiLShrdddiw1gbxtoxxoYxNoyxY4wNo20YbcdoO0bbPLTNQ9txuqYmwTgJBvGybh/npgM4GyACATIY9PM8HeaZSJiN8myU56JhLhoRfrLRMBPh2UiYjTbCB6LhQDQcjIYD0TAX5U8lJISNhNhwiAmHGD7E8EGGDzKhAB0K+C9OkOaDTDjERGqhwyEmEvKHQ1Qo4AuyXpYhWBpn/DjjxxgKo30Y7fP4fR6/z02RqM/r8hEIiSNe3ElgDsxt86BWNwKjCOxymBC7GbGZEbsZscMuhwV1Wj0uG+ZxeDHEhyM+AqG8KE26/F7ER9i9uJ3ArDhq8bjMbsSEOkyo0+xGLBhqwdxWzAN7PCa3x4R69E631oaqYJfcgEh1iETnFGscYpV9WmWbUtom5bYJmbUWqXVCap2QW6aUlhm1RQzBEp1ZajRLTSa52aS0mJRWk8pqUtnMKmHBalZZzQrYLDOZ5wxmic4s1pqn1fCkEp6Qw+PSWsak8NiceWzO/KoWeEwKj0nhcSk8IYenVLBYW+tIVu9IZTWpbCaVzVyL1aS0mBSwQWbSSfVaMaSaUcunVLJplWJGrZjRKsValUSnnjNopSadzKSTmfUdsIuzuFhBQYvgn5uxeRjr+9Scs7ppq4e2emirm7Z5ass2D23HGWEuRP0MRrM4y3kDAV+Qo0IBig9QIc4f4ijhYYjzBTkywPoCjQXWF2SFyaYWobAeKsCSHEtyrJdjBGkI1k8wfrweTAhNeej6T8aPszTO+gmWJjiGYBmCY3COxlkaYyi3n3SRBEISiJdAvISTwJwE5sDdNtxtw1CLG7GgCOxCzIjThNiNTqvebtHZYAiGtbBJbTaqTTqVUacy6lUmndpk0MBGyArrHVYjYhfEgj0uK4FacNTsQYwoYkQcOsQK2S1aG6yxmDQWE2SHIadVh9h1iB1yODQ2h8riUJjtUr1tRmudUlrGpfArCTwyax4Wm15OmwanDAOThoFJw8CEfmBCPzChG5jQDU7phmZ0IxJoVAaNy6EJJTSl1s5AmhlII9ZpZ3WaWb1GotfO6rViPSTWQzMQNKWGxhXQqBQamYWGZqAX09DABPR8HHo+Bj19VcuzMejZGPTsFfRsDHo+Dg1MQAOT0ItpaEgMjUqhMTk0qYKmNNoZSDsDacR6zaxeO2vQSoyQxAhJ9BqxTjOjU89AykmVfEw+NyqdGZHMjMzNjM7NjMrEr2Sz4/K5SZVsSiOf1iqmIWUHjHAwwsIf+md1M1Z3XT43Y3XTFvRM/BbUb3X7BSPtuN/p9SM+2k3RbprBaJrgGIJjvAHGy9Fe1k9wNM7SH0hDUzhN4QyFMxTBUATjJxg/wVA4TQmHOYz2Yf5aPJTPTZFuikR9JOojEZ8XIQknSThJ3EniDi/u8OIOAnd4CYcXd5CEgyScJOHyeV0UWY8X8XkRH+7wYnYMtXpQq8dlcSMw6oRRhxlxmJx2g8Omt1t0dgtkNUMWswY2qs16pVGn1EMyCJJC2jmtSqJRzKrr0SjnILVcDylMejVs1AoHFIdV77LrETvksGjssNpiUloMCrNeZoSkBq1UD8lNOgVsVFpMSotJbjbLjPCc3izWmqeUpjGpcUhsGJzWD0xAz8agJ6PQ4xHto2HNd0PqWl6qvhtSfT+kejSifDKmfD6hfDGtHBIrhiTyEan8lVw2ppCOK6XjKtmESjaulo2r5eMq+bhK8UqhGJ5TvBQrBiYVT8cUj0YU3w0pv32h+Gbgg3z7QvHtC8W3g4o/Dyq+e6n8bkj5/bDy8ajy2YRyYFrxUqwYnpOPSOWjctmYUjaukk2oZRMa+aRGMalRTKjlEyrpmEr6SiEZmRO/FE8NTI89n3r1fGpsYGpsYGZ8UDw5NDs1PDczKhOPymdHFZIOwTxBPmvDPM9p+c6aB6N+GPVbGnFTdpxyeCmE9CM+P0pRbj8lTEgemsJoSji0uf2kIJCbIlHKi/q8KOVFKW+90NuI8KuV631wxIsjXqw+S2F23GPHUBuG2jDU4kYtbhSu/zS7UbPbZfG4LZjbhnvsuMdOeByEx0547IRbEM7scpoQhxFxGJw2g9Mm/F4MWc0a2KSGjSqTXmHUyQ2QTK+d02nmtCqJRjmrkouVsmnF3LRcMiVrZG5aIRVrFBJILTVo5Sa9AjaorCa13ay2mZUWo9yslxp1c3qtRK+ehVRijUKsVc5CKoleO2eAJEbdrE4n1uqnNfoJpW5UohsSQwMT2qevNI9G1N8Nqb57qfz2hfybAfmfBmR/fCb70zPZNwPSb17MfTMw9+3g3HfDc9+Pzj0elzydlDyflryYEQ/Oiock4pcS8dCceFg6OyybHZZKhqWSIankpUTyfFryZFzy/Yjkz4OSPz6X/OGp5PePJL/7XvK77yW/eyT5/SPJ7x9L/vex5A+PJX94Kvm/Z5I/Ppf86cXcN4Nzfx6qdfRsSjIwI3kxKxmUzA7NzQ5LZ4elsyMyyahcMiqXjMglI7LZYan4pWT6xczE06lXj8eGH70aejQ29Hhs+Mn4yJPJ0WdTrwZmxgdnJwclU4OS6TO/89WEW16tbmzvv0+1kb0Lsr23ubO3ubO3tbu3tbtX3d2r7u2eze5OdXdne29XyKlVQuGOkGoju41sb+1ub+1sb+1sbwrZ3t7YrjayXt1ar26tV6tr1epadWtta2uturVW3Vrfrq43qu1sb+xUN7ar69vVterWWnVzbWtzdWtzdXNjdXOjsrFe3lgvb6yV19dW1tdW1laXVyvLq+WlSnmpXC6VV0rllWJ5ubC8VFheWlxaWlwq1bJcKiwvFcvLpXJ5abW8tFZZXl9dXl9d2Vhb2VhbXl9dWqssrZZLlXKxslIsrxTKy4XycrG8UqyUS5VyabVSqFQK5UphpbK4XJlfquSK5WyhnF0oZ+ZX0vnllJDcUjK3lMgtJXJLydxSKldK5UqpfCmVL6XnS5mFYnaxmC0Uc4VCrljIlWrJLxUbyS2VcsVStlBKzxdT+WIyV4xni/FMMZYuRtOlmJBMKS4kW0pkS4lsKZkrJU93tFjKFkq5QjFXLOaKxfO91FPIlQq54mK2sJBZyKfn8+mFfEbI4nx2cT5bWMgVF4VN7bC5hU8YrN3D2DHGjjEra9VZqfJOj+h9ukW3u0W3u0V3ukUflPeK7vaK7vaK7t0XdfaJuvpEXf2ibpGo56Go96Go92F/LaK+z09P//t09z+ope9B16l01tPV96Crv69b1Nct6usR8rCvR9TX3f+gq+9+Z19v54Peew96793vuXe/525vz93e7ru93Xd6uoTc7u663d15u6vzVlfnra57Qr7qvPtV592v7t396t7drzrv3uq8e6vr3u2uzjs9XXfv93Q+6O3qu9/V/6Bb1NfzsL/nYb/Qe1etx/tCj50Pejvr1bpFfV39/V39/V19os4Honv3RXd7RXd6ai/17S7RrVO53VUfgh7RnZ5TL/uD/s6+/q6+/q7+vsYudwv7+7C/HlG3SNTZJ7p3X3SnV3S7W3SrS3SrU/TVPdH/3BN9dU/0VafoVudFHfU276j/wo76ex6e2mthl/t6O/vun3px+noe9vd+Ler9WtThIDgnwToI1kHUPr1u7uzf7RV1NCGZTDZb1ajQjNZPvGmuvAG/+Zb/x4KQnItkEZJFSNZFsgjJbO3u37tfk+/C1731YDRb+yUM4WXeOVd4FuCKuP2c28+hflaIi2Kqe/udfe9nvvMv/X+wfBfW+RK2/D8TD815aM7DcB6adftZ1M9U9/a7zsl3+YPpF3LYbbEZrTcMyNc+PAyHCebVU90/OC1fMz51hruuIbyaxx99ynkFv4S30H84Hprz0KwQlGZRP3tm5mvw0RniauWfyg3J16IOEO6mQCn2dFw+prq73/lAdOF7vbHcYjy+zDkDyPcl4vKxjSDnPu12NJnwPn88WqjZzNePVv7Ut0Szmh8tAVwPjSv5HATrIFgnwW59+D3fJQejxYR34aifXuhocjC9TOHph9ei1CW3H3ANWD2szVM/yYGxdpzd3Dm403M9M1+Lai3kaz3SNyrf5QsB14DFxVlQrnYxlYe1ediN7YPb3RfL12z5NJep09Fcvo/KdEPytXC92S4APhczwr33D2WtbnZj++BW1wXyXWHySJ7jzKqOtsh35UJg3s1iRjgY4WDhYj6UtaLsRvUC+a42fi0G76MONXPxjMo3Jx8Q8cYRzINdLIzWZ77qfkO+FuZdyJn6X8KANduG1vJd3lfA1bGgnKWundXDWt3MxnZNvvMzUzMadU7X7/gCRuv8BrTesNOzaeudBVwDNg/34V+vMZvb+3e6P3567QwXDvNvO36fNOdd43MBl8WBcw6i8Ue77Eev5wMArg0Xybl83PvzHCRb3T249wDIB7h53H7OXb+2wE2zbj9b3bvUVS0AwOeCsRzGchjLNrJ9cNAtAvIBbh48wBEcS3AsXguzc7Df81D0W31KAPwX4Q2yjRABlgiwO4c1+TrOnYcAAK4TXyhAhrhGvEFu9/Cg9+H7L5mBdoCbwsdfJN/XreS78FgMDtOAT8bHB8hTk99HZ77TJRcunzleAwBN8fEBHx84ffDdPTzofdgvrAXyAW4Q4S5mVIjzCQmyu4cHPUA+QBug+CDFB6j6/OcLcUA+QJsQ5Dt98G3I1+zTw4XlrR8CABdA8UHfB/IFTs98AMANQvHBegJCgHyANuGPhPzhICWED1J8YPf1IZAP0A784aD/vXk1+XqBfIA2QIeDdLj+vyjeyweuagHcPHQk5K+HCoeocGj39WHj9BoAcIM0zPOHQ8IheA/IB2gPdJSvJcILFu4dfSBfs2/72s9lvnf8zTcS8AkwUZ6J8nQ0VMs5+Tq+jG+MP3pm5cKHgC+aM+b5I6Hzh932j2jrMyitl4F8/zYwsTAT44X5j4nydITfP3rdWr4Wp9eSze9x0ayd1l1cuM0XPvHCrQJ80TCxCBMVEhbSWr6PGtNxTp2Plp9vqgUtOv2kdgC/PVw8wsUjtX9UHAszMX7/+HXv16LWllw4zZwuufApF5afX27B+WpntgTI9+8EF4+y8QgbayR8cAn5Lmyq2arLlLfwuHU7Z2oC+f6d4BIRLhFh45G6gp8g34XGnO/io762mM8ubOQK2wD4EgkkooF4LVw8ysUjgnwdV7qe75KVz3AZY5LnaLbqcvsN+AIIJKKNcPEoF48eHB+18wwHMOa/l2AyJiSQjHKJ9skH5ipARygZb/gXTMYCiehhe2c+wH8voVQ8lIqHkvGGhYfHx0A+QDvg03E+FecFBVPxUDIO5AO0CT6d5NMJPh1vWHj4BsgHaAvhTDKcSfDpBJ9OhNMJPg3kA7SLcCYVTifrSYTTiddvj1vfKKgZ7fkAe77xT/3+72rfF4JP5ddPNJOOZNKRUwq+fnss/A3H1WS6UfnON36hQNdY3qxfwDUQzaWi2VQkkwrXknz99k3jzqRCnU966a9lnFpPS826O13hesuBfDdCLJ+O5dLRbDqSTUcyqUgmddRSvuSHnG+wmR8XytT64fn2W8h3ppfrKm/WL+AaiOczsVwmlstEs5loNh3Npo/evv2ofOeXG7QYtmarLj+0reW7sM3PLG+xp4DPJT6fic9nYg0Fc+mjk7ctbgh+NfnOt3Nm7SW3tkULF8r0+eUt9hTwuSQWcon5XGI+G89nY/lMLJ85OnnbfTMz33mayde6vEXN8zJ9Zvll9gJwRZILOSGJ+VxiPhfLZ49vTL5mqz6qVLPGL9/mlctb7Cngc0kt5oUkF/LCLHh8cnK13/mS5zhffqZys4fnadb4+VXXW96iX8Dnkl6cTxfmU4vzycV8ciGfXMi9eXfSA+7VAmgD6cJCurAg+JdanE8t5oF8gDaRKS5migsNBdOF+Tc/vAPyAdpBtriYqWUhU1jIAPkAbSO3VMiVFnOlxWxxMVtczBQW3v7wDtyfD9AO8kuF/FIhVyo0/Dv5yw/gkipAO5hfLuaXinX/CrlSAcgHaBMLy6WF5dL8cim/XMwvF/NLxZO//AXIB2gHiytLCytLCyulhZXS/HJpfrl08lcgH6AtLJaXGxEsfAfkA7SHYmWlWFkpVJYLleVCeblQXvrhb38F8gHaQWmtUlotCymulouVFSAfoE0sr68urVWElNYqpbXKX378G5AP0A5WNtZWNtZW1leX6wHyAdpEeXO9vLleU3BjbWV99a8//gjkA7SDyuZ6eXO93JBvYw3IB2gTq1sbq1sbla2NyuZGeXOjvLn+t78D+QBtYW17a626uSpka7OytfG3f/wdyAdoB+vb1fXtrfXtrTUh1c0fgXyA9rC5s72xs72xU13fqQoi/vjTP4B8gHawtbcjZHN3Z3N3e3N3++8//QTkA7SD6t7u1t5uQ8Gt3R0gH6BNbB/sbe/vVff3qvu71f3d6t7uP34G8gHaws7h/s7h/s7B/s7B/vbB3vbB3k8//wzkA7SD3dcHu4dCahb+9AuQD9AW9o9e7x8d7h0d7r2u5adffwHyAdrB/tHreg73jw73Xh/+DOQDtIeD46OD46OD49f7xzULgXyANnH45khIw8Jffv0VyAdoB6/fHr9+c3xYy9Hhm6Nf/gnkA7SFo7dvhLyu5RjIB2gTRydvj07eHJ289+/Xf/4TyAdoB8fvTo5P3h6fvD2q59d/AfkAbeHNu5OGf0KAfIA28ebdiZDjdyfH74B8gDby5od3b3549+aH9wr++q9/AfkA7WDv1Lk14STvT7/8Au7PB2gH/kiICoeocNDHB318kAwFdg8PwZ1JAe1AYTErYJPcbJSZjTKTQWYyLK2tAvkA7UBqMMwZDBK9XqLTzep0YggqVSrdIiAf4OaZ1RnEkF4M6Wa0uhktNK2BCuVKVz+QD3DzTGv0U2rdlFo3qYImlNCEElpcqXT2AfkAN8+4Qj8u143JoTE59EoGjUq1C0uVe/eBfICbZ0SiG5XoRmah4VloeFY7PKvNl8p3e4F8gJtncFo3OA0NTkMvp7Uvp7WDM5p8sXynB8gHuHmejUPPx6HnE9rnk9qBSc3ApCZXKN/uBvIBbp4no9DTV9CzMe2zMc2zcc3zcU12sXyrC8gHuHmejEBPRrRPRjVPXmmevtI8HVMD+QBt4vGw9vGo9smo5smo5umY+tmYOrO4AuQDtIH/B8rTJYiuPSrSAAAAAElFTkSuQmCC" alt="" />,与之前重写父类方法得到的效果一致,于是不太明白new到底做了什么用。

但是细心的朋友们一定注意到了,这里给大家埋了一个坑,运行的代码里,都是定义了自己的对象,运行自己的方法,结果自然会是如此了,根本就没有体现出多态。

如果这里是定义父类的变量,去指向子类的实体的话。

static void Main()
{
System.Console.WriteLine("这是main方法");
A c1 = new A("Tom");
System.Console.WriteLine( c1.Test());
A c2 = new B("Jerry",);
System.Console.WriteLine(c2.Test());
A c3 = new C("Anlex");
System.Console.WriteLine(c3.Test());
System.Console.ReadLine(); }

结果便是:aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAANcAAAB6CAIAAACjnVHSAAAgAElEQVR4nO2d6XMaaZ7nH/6pnZmeLluyLGTXXdMTs9uxMbER+2ar7Kpy2ZY9ERu7sdE9XVU+5UO3hJAEQtx3Agl5kweQQJKAbiTLki9VlSRAR1muerMvnkyETh9dlt3t/MYniCR5MkmUH35PPo9AAuVyxe0LenyI1x/yBkLeQMgbDPuCEV8wQse5qZkHVwbIq4PEtWH8+gh20xqbmLi3urK8uLCwuLCwsrLc50/3+dMYyTjcXorhGJZn+QSfSAmpdDKdjdxtBs3t0Zws5fK5fCFXKMqFouOyDlxyyYXiDvJ7Kcj5guy8rAOX7fliDkJ06YG+nSjkZIirVQcuOgoS3tUM9O14QZILklyQcnlIth77JR1otap3pVw+K+clGd6qO8zXU4QLtUfhzrNyISu7LurARUc+i3U2A/1dLJ/N5TNYRzMAF2xyRpIzWTmdzdUjZqRt0lkxnU2ls6l0NilmkulMUswkxUxCzCTEdCKVFlJpIZkWkqKQFPmEyCdSnJDkTN/owDkjn2A4geEEmuXpOE8xHMVwJM2SNEvScYKK41Qcp5gdkAxGMhhJb9N3VgfO9hB0jKBjOLWLqMqOuxh5EGiMQGNEJIZHYngkikeiGBrDYziJkzRJMxTD0nGOiXMMyzEc77txAjTe8HJ8nOUZlqfjHB3nQLlc8QTqFAyEfIGQLxj2BsM0w06XHn/eFvjirv/LHs/XA67zJkc+X1pd/rHewoFICiMZh9tDM2zNwkQqnVIs7EBzsiTnc/mCXCjmi2OOyzpw2S0XxxTyu9gWMZcv2i/pQKsrp1qIdbYAfReWL+bkYk4u5hyXdeCSXS7kdlko5yU5X++ilMvbWnXgokNZKe+8VUWU5ELtuXJyMScXcnJR2lYwr+zfcVkHWm25vKRYKEOzrRd14KIjI0ERcxlJVTAriVlJzEipGmkplc6mxGxSzEIFFQtTaYiQEqGFQkLkEyleSEELB/lEHIrI1osILWSJA0TEyBo0RtJY/1kdONtL0hgUscYuIwkqRuxWs17KmLqAYiSKEWiMQGM4GsOjGIERFEExFMMycY5h+TjLxzmB5QXfzSZw4qaPF1heiHMCdBGUK5Waf2otVBZiODVdevx/TdEzPa5/bx/6Y2fvH3s78vnS6vJPCwsLCwv3V1aWTXHWmiYxknG4PFSdhUJSHDmvA2ouOogOPdB3UvnimPOyDlx254tj+eIY0dWiNmnpJMfkAt3RApo7abkwJheKcsHVqgOtzlrJpDpaQHMntY+jtRoJy5hcyMlkhx40dxBQsmzOeVEHLjjykuOSDlyyyXlJLkQ79ABcssmFnFyIdbQAfSe2XWtdrTpwsbNLrxyeunO5kJMLtlYdaHVmcztrYS5vbYUWOi7owIULrToAwMn2SDYnWlu3fxYXbLAKjlzQgfPWlJhJipnQ7Wb14ZNtYSiiGLx1Ul3Z9NW5ptoOwNemOJdgOIFmBVhLKIYzfKkDZ69/36i2OWMkqDhBMQRl/GL7uc/2QhcVCwe+0IFj33swElo48LkOfN7n+bYBHPvuyudwq+NXbcSAsgwa/uJU1LR931Db6bHv3FGMjGKuvxwHxz4/cwwAAM70ua42gMar175Sn/zE9WCCE5L+m03gRNuNc+rqr00sJygWwvrnC4Z8gZA3gHgDiDeIQAv/cH3g9JX2j27d/rTzxh/6rsBauLBwH9ZCdzHinwxgJON0eak4x3A8yycEtRaid5tBc0c0l8/lyY4WoO+i82PjNQuJrhag7yZqOuq78R0WjuHKyiK8K7v+QwcuO2olUzGm1lNvp7mDzMlkO7Qwl5dy+ViHHjR3xnJ5KeeEnamUI9r18B2Sl5TGZA7v0gN9O65YCODFgEy16wFodeZgOcQ7m4G+HcvXWShnc3LW1qpTemTHBZ3iXzqbS9tadaD5Ngq7Y9t5HWi6Ha23MHS7GTTdQcRMQkwjt06CptvBVNp0XgfA+eGkyCdFPiFyiRRnOq8D3wwKCZZPxDkhzgkMy9Msv20hAGcGWIJmCc+1BgCOX/Hi1OAXOnD8igdWxL6zOnD8qp1ksP4vdeBsL8nYv28E4GwvQWMEbf++ERy/aic83zZA4egYYfhcBwBo+NZJY3D9FwYMhwqe6YFl0nHlOACf91Ix3P3tcQDAmR6cxAiKcF9rAAA0XvdxAssnhs7pADg3nEgF2k4CAE60hflEijd9owMnrgcToFyp+IJhlZA3GPYGQxBo4QfX7358p+2z7uv/avj+v5n+DGthrUcefzI+/mQcIxnHS1tId7aAnbnsgLYp0ErlgxbmxxyXdKDVXeu18VrvvF0Li7kd13C1Tplo14PmdgL2m7BrzmKdzaDVZr+ku+iQcs6LOn07rhqGFyTZCa844a5iHS2guTMm5yVZEToKry+xjua6FwAvCtNZ+wUdOG+F3bFkuaADF2zwijCVzobvNIOTd0PprPm8DpwfTYrRtpO7fg7nh1OWr3Xga7NyUcgLKU6AFp4b5BMsl4C1kGF5Os7TcY6Kw1o4SKidct9ZHTgzgBu+1IGzvbWrQ9e146DhW5dqIUFjxMAXOvB5nyLZ5310jIC10AP76J4zOvDFAFanqW1HAyqGUz1ndOALA7Tw2HfuGE5BCxtB4zUfz/ICJyR45FYTaLoZEoPwbaZc8o58rQNfm1KgUqkGkEgAifiRsD+4A2jhJx03/9B79d+M3/7R/Kd/t/2ffL60Undd+Gzr6bOtpxjJON1eOs7FOYETEkIilUylxXQWvasHzR1RSYb9o76TLhTHXZd14LK7UKS7oJfFMYXCTshuPWjpJIt5pTve0zvrt3tnub5Hrg015LwC3qkH+nZMHa/YL+lA6912PVD8a7XaL+lgpVQszEvquAfuCutoAc2dmJyXcsRdPTipCp3FOptB892YrF4LwnGJ/YIOnB/NpTO5dAZaaK0NR8J3mkHTnZCYUSxMRW+dBE23IuoVoZhIikLSck4HvjanhESKT6T4BLQQXhcmWT4R5xKwFjLxulp4dpCk4yQdJ6l4/1kdODNAGL7UgbN9JINDFAvrrgtJuveMDpwZgOOVXkLR8dh3HoygMYLqPaMDXxgwgsII2n6lERy/aic93zYo/fjONu5vG8Cx79wYQeEkTXquNYLGa36BFRKckBSQW02gqS28w8LaywSVSjUYRncQQoMhNIBEoIX/2v/9fx3+z/9u+X//w/G//6fncj5fWv5JtXB5eWNjvVIuYyTjdnuZOM9yCV5ICkkRWhi9qwfNHbFcPieTnS1A31Wz0JMvjhNdLQC0dFJj+eJY3vUf+i4aFkh9F50vjDkv68Aldx7WRbXy4bUBtfOyDlx21MYxu8fOhZxM1K4L68YlspSTsznHRR0AAFy056UcDvvl5nZcyslwtNGO5SW51nFv179YLi/ZL+lAqy0nZyGxjmbQfCeWy0q5TFZBrYXqiNh6UQfA+VFoofW8DjTdRpPQwm9GE6k0cuskAE1tITGRFBPm8yfaIkIyZTqnA+Cb4USKT6QCN7+5EUzWRicsn2CVHlmoDTMNX+oAaPzeEyfpODnwlQ6ALwwMDi8KzwzgFI1TdN8ZHTh+1UHSuGohTtKY6+px0HDsuCoWlOw7N0ZQOywkaxbS9iuNANqsbA4+76UUC7/34CRNUAzludYIAPhqmOUTnBC62QTAiVvBZCrYdhKcuBVMpIRESkiMnFNqYbUaQmMhNBZCoyE0GopEkUgUiaDBMBoj6MLY3DWv47rfdjNouRUy34kMi2KhZuHyTz+tVSsrKysYybi9PoYTWD7JJ1KJZDolZtIZKdquB82dmFzI5aldFhaK48oyjL6bLI4pFnbS+YL7kg60OmFdLOYLVEcL0HdS+UIR4qyf7skX5J3XhQBcsudroxPVJ3l71sbWqgOg1ZqTs7l8tEMPauNcrFYLt7fatlAVOluzEIMWwiq428J0JitmJDGTjdzZ7rehgkm1FsKpGXNtJAfrREIUEqJp+xLezAlJTjB/rVOv6OEAkxPUfpkb+FIHzn51Vt3i+FUvSccJiiHc147XnrvhqoNi8J0W4qTnuwYAQMN30Kr6UlerlCSNk7TjSqMiMUn3ndke8nzeT2PqfuA1KEkzlPd6I2j88qsTaqtzw4kkD68LT7QFhCQvJHnB/LUOfDWcBNXqmjLTE8MjUTwcxcNRLIxiYRRDMerXX39Zq66uVVbXKqvra2vra5X1avnpz5tbT3/e2FivVqvl8mq5vIqRjNvnj/MJLpEUUqmEmE6ms2JWysA5mkJBLhTzhbFCcbwwtpt8cT/gQETtrGWyWw9aOshaf+1u1YFWp1Im62Z2CruR4aC41Sbns5Dc84EXlFm5fkIRbuu8qAMX7LWWcjYnZyQ5k4OXg3UThJnaBGE2BUlnkwrKpEytFqpTM7XZmZQAByXJFJfYRZITkqyQZNUxCqNURG7gKx34coiKsyTDkgxL0HEFapvd84gq8CKybjZnf/ab+qHrISiaoBiCYkg6Di286uPgu4XlE6xQB78DUF1bi2IEBN0Bbh517Hs0BM1ScZ6g4rU1Zovd6w+wvMAlkkJSTIqZVDqbzkoZKZfN5XP5vFwo5ovFfHGsMDa2fSG491pQoX5cUjfRDeex8wW8swXoO3H1rjK3nFenCXdAtOvByXZcKV2SnIUXcFIuLeXqb9OwS5Ugco36raLtetDcEZHktLpJOitBxBoZCTqXSmdT6QwkmU4nxXQCAm1LWc7pwNcjtUlB5fpPJcknklwiySX2njwhHrhZm5BRatw1v+ErHTg7SDJxWAJVXWjILl120H9WBxq+dVEY+SLQ+6wkKIxQlnGSwkkap2jCfa0BNF7xxKk4S8VZOs7RcETP8jTL0XGOjvM1QHVtLUqQUYKM4kQUJ9AaGBFAwqN2h8Vmt9jsFqvCqM1htdmtNofV7rQ5XHaX2+HyuDy+KEYwHM8KcMpaTIjpOhHlXD4v55WKWKP+dye5QmGbvSVtW7W8Qr1qufoJ6m1vspKsWrUNHLfWjFFuM3XLdQ/VG7ZjK5VandsWTvkVCJx/FoWUCG/VIpeCA0MAADg3wiVSsLZxu4uEwPJCHAILHicwHM9wPKOeSIrlqDhXK35wOKIWKsWVGEHFCDKKH0Q/nAj8X72HtNkGhdXq8GYECScUMdeV46DhOzd8GzA4xeA0g9NxCLHjrcIoFqIEiRJ1CuJEBKsHj2Bqr40REYxAcQK6GyMpjKIJmiGYOMVyNMfH+QQrJPlkik+JsGtOZaS0WmayOTmzl5oi+yNBRKmu5OxwQu31MtlUJpNM11H/mzExLYiiIIpCSoFPKrcQdTkFl4WkyKdEHjZWt+JTIp8UuWSqDli0lI4yrsLwAoSGv3DjeJrjaJajOI7adogj4ywZZ4k4SzJxkokTjNqT0gxBwzPH4DSN0zQGoWiMomMQkooSFDx9EfWUhTEsFMNCUQyJxiBBNLqDyMsRiKD1BCPo4e2RSBSJxkI7wEKxHYRjWDiGhaIKoLq2Vi8fihORbfAwVo+ycQTDw9BLnEAJouYiTjOk6iLDC2wiwSaSXDLFp0RBhEamdygCu6q02lWJYg3hAKAWfErkUyk+WU+STya5ZJJNJtlEkt3RkQmsIMR5geF5CA3heJrldgAtYVn1Lk+xHM1x8BXRHAc3UTViKZYjWY5kWWiS6hCDM3GcZjCa2eENScVIKkqSNVASvvlJ+NMO48q7XflR1xGCxGJILFZzC4lGkWg0iEYDaDQQQf0R1B8O+0NhLxLyIiEPgngQxB1E3EHEFQgq+AMvi9Pv38ULbag8o3IABxIIQkB1bS2C45AwvuNHENr1+vcQgs1wPIzjKEFESTJGUTGaxmiaiMdJlqU4Dp5yRhAYQYgnEmwd8TpgAwV+F6o9HISjarDbkHGWZFXicYJhauAMgzMMxjAxmlagqBhFRakdWihm7OGgNhGCiBBEBC7geBjH9/lx1VWjQAQNoKg/EvHD2zp84YgvFPZuO6Ro5AmFPCFVqXqCQVcw6AoGncGgMxBw+P0Ov9/u89l8PqvXa/V4rB7PqMdjcbstbveI0zXidI04nDtw7of6qNnhOIT9t92Ly/VCOJ2gslYN4VgIx0JYDMFiCIYhGIbEYggWC2KxYCwajMHbaAASRRVi0YC6PhiLIRgWwmJhHAsTeIQkUIqM0hQ85RhDY3EGizN4PI7HmX1gGGwXNI0pxlCQKFWDREliG4JACRwlcJQgUPheIvAwrhDClTcSgsUQLLb9WqJoIIr60RoRn3rrQyMQr3rXr6xBdzwaiXgjYYVwyBsOeUKIO4S46vxwBAPOQMAR8DsCfoff5/D77D6f3e+3+Xx2n8/m99l8XqtXYdTjGfW4Rz1uC8Tttng8FtUkdaXL4naNuF1ml8vsVFwZhtjtQ3b7kM02aLMardaB0dEBi8VgsfSPjPSPmPtHzH1mk4r5IHpNpl7T8E5MOzCbes2mXlNtJ6aD6Deb4PM+H7MZVKrVYCwWjMUCNc9i0UA0Goii/hpoxL99MiK+iIqyHIanyh9FA9FIIIYGsSiCRYNYDMGwEI6FCCyEYyHoB4GHCTwEgZbgWAjHEBxT3gCqMSrRIFY7MFS1J7IXHxr2RRS8kZA3EvKEQ+4w4g4j7hDiCiEuBHEhQRcScCIBR9DvCPrtAb894Lf7fXa/z+b32f1eaIbN57X6vDa/1+b32nxeq99r83ltPp/N74PLVp/X6vOOej2jPs+oFyrisngURUYUUZxml8PkcphcjmGnfdhhH3LYBu22QYdNWbBbjTar0TaqYLUYrZYBq2Vg1DIwajGMWgwWi2FUxTJisIz019E3MtI3MtI7YuodMfWYTT3m4W7TULdpqHt4sGvI2DFobDcOtBsNd42GOwP9dwb6bxv6DqO/9+U4fG+GvjuGPvi82xj67xj6d68c6L8z0A8q1WoghgaiEX8U9cegdhF/DPVFUV80Uo8XDdfjiYQ9kZA3EoL1QFlGwx407I1GvGjYh8I9oL4Y6o9G/NGIP4r6YnVElWfx1kAjXmWfIU8k5AkjnlDQEwq66kECLiTgCgacQb9KwBEMOIN+peoE/Y6Azwbxe61+r9XvHfV5R33eUa/H4nVDRjwus8dldjvNbqfJ5TC57CaXw+S0DzvtJqd92GUfdtawKXdd9mGnfchpH3LaFZmcNqPdNuiwGu3WAfvogHXUYLUYrCP91pH+UXOfxdw3YlYtMXebTT1mU6/Z1GMe7jEPdysMdZsGu02DXabBrmFj17Cxc3iwc9ioLhs7h4ydQ8aOYZUhY8egsWNwoH3Q0D5ouGs03DX23zX23xnouzPQd9vQ29bfc7Ov+2Zv942erus9Xde6O691d17r7oBc7Wqv50pn+5Wu9iudd18YpfHVzrtXuw7YFq6HT9HdcXXPk17tar/a1VFHO6hUK3404kfDqigRf808WGBq5qk1RlUk5AkjnjDiDiOuMOIOB93hoDuCuMKIKxx0hxF3JOSOIG7YRl2GjWEbiDMUdIYCEIdSpXz2gM8e8KnVyGP1KVVn1Kdg8arlx+u2eF01tywexbARj9PsdpjdDpPbYXI7hl12yJDTNuSwDtlHh+yjgzaL0WYx2iwDVothdMQwaukfHTGMWvpGR/osI/0Wc9+ouc9i7rWY+ywjvRZzXx29FnOvxdRrMfdYTD0WU49luHtkqMs81GUa6jQNdpiMncPG9qGB9kHD3cH+u4OGO8b+O0bDHaNBWR7svzPYf8fYf9vYd2ug75ah95ahp83Q09bf29bf29YPl3va+nvb4Hrlbk9bf8/N/u4bkL7uG33dN3q7b/R23ejtutbdca2n42p3+5Wu9u87737Xeefb9tvf3m37y922/7x9888KNyB/unXjT7du/Om2yq1DUZv9+aDGbTf+1LbP+r3PWLtbDyhXK/5IyB+BFoZ9qOLfRGm6ND9fmp8vzd87nJn5uW3u1TM7Xc/c7PTcbO3RaQVlfY2pWUhparY0OVuaLM1MlqYnStMTM9OTpena8m7g+tJM/aPjM9PjM1Pj01Pj01Nj01Nj05Nj05Nj01PFqUmVieLkRKHGxER+Yjyv3ELG5ImxvIpcd1euZ3xMHi/K48XceDE3ptxKYwWpWMgW8zsp7FnIZ4v5TAEiZ/JyOi+nC3LmYNL15GUxnxPlXUgpWUrlsslcNiFlE1Imkc0I2bSQTQsZUciIyvJfhShkRB7uLSPyKoft/OBHQbmiWAjLng8N+6LhiZmZ2x3tTadPNZ1ueR2c2I0e0nhK33hK39iib2xpbmhpbtCfbNCfPK4/eVzfdFxZ2EGD/mSDvrmhpbmhRd32FNzV9j73sPfZD+GgnehPnKp7xlP7r4evRTm8ll2Ht88TNe7cdm/L/X50Lc97Xbt3W3fML/KSD2iz+wU273qZ+/0QdjZrgev1DS3NoFyp+MOIP4L4IiEfGvKhYR8aKs3Pnzi9+9N/tdA0fdBDtQYH5fANX3de+QDe+JH/nadcqfhCQV8I8YVDvkjIFwl50VBp/l7Nwn1PwOFn5aBH34Zz+SJvoVfYSstflXKl4kOCvlDQF0Z86uCjNH/vxKntj0rtPQd/xxbu2+ZtOPK/52xbGEJ8YcQbRrwRpDR/r7Flt4Uv3s++JT3yIYdx+IFpFh51ypWyDwn6kKA3FPSGg54w4g0jpfl7DS3Nz932ZWveb3UuX03o526y18W34b30TqRcKfuCQS8S9IaQmogz9+Ya9Lu/kwP2O0/77vNv1MJD2mjmvd6UK2UfEvAiQW8Y8YYQbzjoDgehhfu++2vLh5yYt7OKaBa+vSlXKj4k4AsFvWHEG0Y8oW0La232LYF//Yk5xNGDxH1u45d9bxzU8rlrtPyWUS1UFPSEg55wsDQ/16Dfvi58wbNySAnc9/TXL4AD+tkXWVl/9zdx6wWPX8tvFjhf6A0FvWHEo1Kan6sfndB/RS08pNkhFh5+yl+rhS++UstvlnKlAvtib1j9mAKcqTlgvvCg5fq8SBtwsIXPteo1WXiI9Ae9BC2/TcqVivJJGTTkRUPw81oHzVq/Qjmh92TXQ+BILHzllZqCR5FyteKr+yiDNxL2ouFdv0eud2VXXsTCg576uTIdJOUup1+fhZqRR5Rytap8iHr7M4WR0vx80+lTsMEhCu6bXe3fhjN30DEcbuGLi6vlr025WvXXf7g/ivpRdHZ+vun0afC8vnVXTdrbHrwFp23vARx+YPX19fAXq+U3S6VaDUSjgWgsEI0FYrFALBaIRufu3z/5/vsvu6t9z/ebPZEvVQV/w221vFwq1SoSg9+7g+DBGDZ3f0H//gdv+tC0vDOpVNfCGFEjhBGhGH7v/kLLBx++6UPT8s6kurYWxqk6yDBGzi8snvrwozd9aFremVTX1lCCRgk6QlA15hcXT3/48Zs+NC3vTKpr61GSiRLboAQ9v/jg9IefaGNDLUcUxcKd3F988P5Hn9TPWQBtbKjl9aW6to7RrAKlcH/x4fsffQobaFVQy2uPYiG1TYyKP9fCfbtprQfX8oqprq3vUJCMx8jnWFi/Zt/lXV25Fi3PSXVtHSNZCFQwRsbhdSFsoFmo5bWnurYeJRgUpyFRnEFxZYwMG2gWanntqa6tRTCyBoqRKEbNLyye+kCZL9Qs1PLaU6lWERRDIlgwgiEohqA4guL35hf1pz8EB4xCDlp/+F0tWg5MuVL1IxH4b7n9wYgfQQOh6Nz8/ZMtL/2ZGi1aXjHlcsXlC7o8AZcn4PIG3f6g24+U5u6dOHng3+zSouU3zupq2eZ0j9pdo3aX1em2OT12l2+6NHe8cZ+/zaBFy2vJyurqyKjdbLGZLTbzqH3E6rTYXVPTpd8fb3z+xlq0/CZZXlkZNlkGh0cGh81DJsvwiHV4xDYxNf273x9704em5Z3J8vLK4LDZMDhkMA4bBk3G4ZFB0+j45NQ//u73b/rQtLwzWV5eHhgc6jcO9Q8MGoxDA0Mm45B5fGLyH/7xd2/60LS8M1leXjEODhuMg/3GQYNxaGDQNDg0Mj4x+V/qLDxo1vDo8yLzl2/8ILW8dJaXV4xDJoNx2GAcHhgcHhg2G02WXRaCt2MK+rm/s9n3rpa/gSyvrAyZRozDZuOweXB4ZNBkGRoZHZ+c+od/+uf6Zkd/ag//3czhy5qFf2NZWVkdGbWZLVazxWq22MxW28iofXJq+p9+9159s32FOGglONiMFxQLPM+nfTfc96i0/A1kdbVsc3qsdpfV7rQ6XDaH2+b0TM2U/vm94/XNXqQOgf2EeMH1e3d1SA550pfaj5a3JeVyxe0Lur0Blyfg9kKCpdLcew0nDtdl38JTv2bfTfZdv3f5kOxttutINAv/9lKpVIMhNIBE/EjEj0QCSCSARGbvzTc0Nb+CLgc99CLrDxH68P3saqlZ+LeXanUtEiPCMSIcw8MxPBTFQ1H83v2FJv2pF7FwX3X2PstzxT2kwu27k1c4Bi1vb6pr6xjJxAg6RtBRlfsLi/pTH4BX+nzhCzbelRdRh96Tgx56sZeu5a3J2vo6wbAEw+K0AkGzC4sPT71/dH8hRFPnXc/a+gYVF1R4Ks6TDL/44NER/IUQrXppUbK+vsFwCQjNCpAHDx+9r377SYuW15719Q2WT7F8iuWTLJ+M88k4n3z46PEHH2kWajmqrG9s8IkUp5DkEklOSD589PjDjz9904em5Z3JxsZmIpVOJMUaQkJ89PjJx59oFmo5qmxsbCbFTFLMJFNpSCKVfvxk6ZNPPnvTh6blncnm5mY6nRFriBlRTD95svTpp4qFLzWG1Ya9Wl4lm5ub2ayUzUqZrJTJZDOZbDqTXVpa+uyzfwGvapVmoZaXy+bmpiRJkiRl67K0tPTZv/xLvUyvUBFfz/Fq+XvM5uZmLpeT1LyIhc/9ddne9Yf82u2QrbS8K/n5559zuZwkQaCI0tLSD5999hwL9y7XcoheBz2kKfhOZ/PnnyVJlqRcVspls7ffbYoAAATXSURBVDl4jbi09MOnn35G7wnc5NUsPKh8HlJTtbwr2dzczGZz2Wwuk5UyWSmdldJZ6cnS0seffPo6auHeaBZqAZubm+mMJKYlMS2JYlYUsykx+/jJ0gfqf5qAzX4rCw96SBPxnc7m5mYqLaXEbDKVSaYyQjItJNOPHi+dOv3RK1h4UOe7d81B276WF6nlLc/GxqaQzAiJDJ/I8EKGE9Isn3746Elzi/Z/8LQcVdY3NqF5cV5kOJFhRZpNLT580nhS+yuaWo4q6+ubcS5NsyIdT1HxFMmkSDq5+ODxscZTb/rQtLwzWV/foFmRZFIkkyLoJE4nMSqxsPj498e1v+Wq5aiytr5BxlMEkyLoFE4lMSqJkYn7i49/d0z/pg9NyzuTtfUNcqeCioXvaRZqOaqsrW+QcZFgRJxO4XQKp1IYlVrQLNRylFlf36S5NM2mqXiaZCDi4oMnWo+s5eiyvrHJCtk4n2G4DMNlaDZNc+kHD5fea9BGJ1qOKhsbm3wyxydzfFLikxKXkLiE9OjR0vETp9/0oWl5Z7Kx+bOYyacy+VQ6n0rnk2k5mZYfL/14Qpu11nJk2fz5qSSPS/JYNlfM5opZqZjNFZd++Emv/QZPy5Hl55+fFoqTheJEjXxx/Meflk+//9r/QogWLUqePn06MTk9MTk9MTE1PgFvp5aXVz7U/jaDliPL06dbU9OlqenS1NTM1PTM5NTM1NTMysqq9q14LUeXra2tmZnZ6ZmSwnRpenpmdXX1k0/2+cS/9hFALa8lW1tbpdIsZKY0OzMzO1OaXV0tf7Lf9040C7W8lmxtbZVm50qluZnS3Iwq4upq+RP1eyeahVpee7a2tur9m5mZnZ6ZXV0tf/SxZqGWo8rW1tbMzNz0zOw0vJ2enZqeXV0tf6D9FU0tR5anW1vTM3NT05BZyMpq+dTpo/u71lre9Tx9ujU5PTc5NTtRY3J2eaWsfftJy9Hl6dOtyam58am58anZ8UlIaXml3NT8wZs+NC3vTJ4+3ZqAFioKzo5Nzi6vlBuatM/UaDmqKBZOKoxNzo5NzC6vlLXv4Gk5ujzdejY5PT8xdQ8yPjU3Pjm3vFJ+r0GzUMtR5enWs6mZ+cnpexPT0MJ741Nzyyvl32uftdZyZHm69Wy6dH9qZn5yZn5yWtFxZbWifeJfy9Fla+vZzOzCzOzC9Oz96dL96dL9qZn7q6tVrUfWcnTZevZsbv7B7L3F2XuLpbkFyGq52qB970TLkeXZs1/uLzych9x/cG/+wb35B5XK2olm7XsnWo4qz579svjg0eKDR4uLjxYWHy0sPry/+KhaXde+d6Ll6PLLL788evTkocLjhw8fP3j4eG1tXfveiZajyy+//PL4ydLjJ0uPHy89evzk0eOlR4+frK9vfKh9pkbLkeWXX35dWvoB8kRhaWNjU/veiZajy6+//vrDDz/+8MMPS5ClH5aWftjY2NT+G6OWo8uzZ788ePBwcZsHi4sPqmtrmoVaji5ra+sEGcdJpgZBxhcXH3ys/ZduLUeW5eUV47BtYMhqGBo1DlqNQ6PGIev4xJQ2OtFydPnxx+WOHlN711B711B7z1BHz1Bn73C+OK7N1Gg5uiz98NP1OwPXbg9cu2W4fmfg5h1D212DlBvTn9JmrbUcUf4/h3mj4KTQe8MAAAAASUVORK5CYII=" alt="" />

这时,c2.Test()是调用了子类重写的方法,而c3.Test()是调用了父类的方法,并不会调用类C里的Test()方法。

到这里,我想大家都理解隐藏的意思了吧。也明白书上一直强调的,要慎用new关键字隐藏父类方法了吧。