AEIOU
选出的子串中由AEI构成的子串和由OU构成的子串之间并没有什么关系,分别算出最长的加起来。
#pragma comment(linker, "/STACK:102400000,102400000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<algorithm>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<functional>
#include<math.h>
//#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef queue<int> QI; void makedata() {
freopen("input.txt", "w", stdout);
fclose(stdout);
} string s;
int dp[];
int p[]; int main() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
//makedata();
std::ios::sync_with_stdio(), cin.tie();
cin >> s;
int n = s.size();
int max1 = , max2 = ;
memset(dp, , sizeof(dp));
for (int i = ; i < ; i++) p[i] = -;
for (int i = ; i < n; i++) {
if (s[i] == 'a') {
dp[i] = ;
if (p['a'] != -) dp[i] = max(dp[i], dp[p['a']] + );
if (dp[i] > dp[p['a']]) p['a'] = i;
}
if (s[i] == 'e') {
dp[i] = ;
if (p['a'] != -) dp[i] = max(dp[i], dp[p['a']] + );
if (p['e'] != -) dp[i] = max(dp[i], dp[p['e']] + );
if (dp[i] > dp[p['e']]) p['e'] = i;
}
if (s[i] == 'i') {
dp[i] = ;
if (p['a'] != -) dp[i] = max(dp[i], dp[p['a']] + );
if (p['e'] != -) dp[i] = max(dp[i], dp[p['e']] + );
if (p['i'] != -) dp[i] = max(dp[i], dp[p['i']] + );
if (dp[i] > dp[p['i']]) p['i'] = i;
}
max1 = max(max1, dp[i]);
}
memset(dp, , sizeof(dp));
for (int i = ; i < ; i++) p[i] = -;
for (int i = ; i < n; i++) {
if (s[i] == 'o') {
dp[i] = ;
if (p['o'] != -) dp[i] = max(dp[i], dp[p['o']] + );
if (dp[i] > dp[p['o']]) p['o'] = i;
}
if (s[i] == 'u') {
dp[i] = ;
if (p['o'] != -) dp[i] = max(dp[i], dp[p['o']] + );
if (p['u'] != -) dp[i] = max(dp[i], dp[p['u']] + );
if (dp[i] > dp[p['u']]) p['u'] = i;
}
max2 = max(max2, dp[i]);
}
cout << max1 + max2 << endl;
return ;
}
数字游戏
这题看别人的代码貌似跟全排列有关,但是没想通关系在哪。
我的解法是这样的:首先加减和交换的顺序并不会影响操作的步数,所以可以看做是先进行若干步交换,然后依次把每一位加减为B的对应位数字。以A为初始状态进行bfs,然后卡时,就过了、
#pragma comment(linker, "/STACK:102400000,102400000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<algorithm>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<functional>
#include<math.h>
//#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef queue<int> QI; void makedata() {
freopen("input.txt", "w", stdout);
fclose(stdout);
} char A[], B[];
int cost[][];
lint p[];
int n;
struct state {
int step;
char num[];
bool operator < (state s) const {
if (step == s.step) return false;
else return step > s.step;
}
};
lint calc(state s) {
lint rtn = ;
for (int i = ; i < n; i++) rtn += s.num[i] * p[n - i - ];
return rtn;
}
map<lint, int> mp;
priority_queue<state> q; int main() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
//makedata();
std::ios::sync_with_stdio(), cin.tie();
scanf("%d%s%s", &n, A, B);
for (int i = ; i < n; i++) {
A[i] -= '';
B[i] -= '';
}
p[] = ;
for (int i = ; i < ; i++) p[i] = p[i - ] * ;
for (int i = ; i < ; i++) {
for (int j = ; j < ; j++) {
if (i == j) cost[i][j] = ;
if (i > j) cost[i][j] = cost[j][i];
if (i < j) cost[i][j] = min(j - i, i + - j);
}
}
lint b = ;
for (int i = ; i < n; i++) b += B[i] * p[n - i - ];
state s, u;
s.step = ;
memcpy(s.num, A, sizeof(A));
q.push(s);
mp[calc(s)] = ;
int ans = , iter = ;
while (!q.empty()) {
s = q.top();
q.pop();
int step = s.step;
for (int i = ; i < n; i++) step += cost[s.num[i]][B[i]];
ans = min(ans, step);
iter++;
if (iter > ) break;
for (int i = ; i < n; i++) {
for (int j = i + ; j < n; j++) {
u = s;
char t = u.num[i];
u.num[i] = u.num[j];
u.num[j] = t;
u.step++;
lint c = calc(u);
if (mp.find(c) != mp.end()) continue;
else {
mp[c] = ;
q.push(u);
}
}
}
}
cout << ans << endl;
return ;
}
第K小分数
前K个分数显然由每个质数构成的分数的前连续若干项构成,由于最多有1000个质数,所以最多有1000个最后一项,所以第K个分数一定是这最多1000个最后一项中的一个。可以用二分法来确定每种分母的最后一项并计算其排名,若其排名为K,则找到了题目要求的分数。
#pragma comment(linker, "/STACK:102400000,102400000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<vector>
#include<algorithm>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<functional>
#include<math.h>
//#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef queue<int> QI; void makedata() {
freopen("input.txt", "w", stdout);
fclose(stdout);
} lint p[]; int main() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
//makedata();
std::ios::sync_with_stdio(), cin.tie();
int n;
lint k;
cin >> n >> k;
for (int i = ; i < n; i++) cin >> p[i];
for (int i = ; i < n; i++) {
lint l = , r = p[i], mid;
while (l + < r) {
mid = (l + r) >> ;
lint tmp = ;
for (int j = ; j < n; j++) tmp += mid * p[j] / p[i];
if (tmp == k) cout << mid << '/' << p[i] << endl;
if (tmp <= k) l = mid;
else r = mid;
}
}
return ;
}
逆序异或和
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = ; int n, a[N]; struct BIT {
int c[N];
void init() {
memset(c, , sizeof(c));
}
void insert(int x) {
for (; x < N; x += x & -x) c[x] ++;
}
int count(int x, int res=) {
for (; x; x ^= x & -x) res += c[x];
return res;
}
}bit[], num; int main() {
scanf("%d", &n);
for (int i = ; i <= n; ++i) scanf("%d", a + i);
num.init();
for (int i = ; i < ; ++i) bit[i].init();
ll ans = ;
for (int i = n; i >= ; --i) {
int tar = num.count(a[i] - );
num.insert(a[i]); for (int j = ; j < ; ++j) {
int _num = << j;
int _bit = a[i] & _num;
int _bit_tar = bit[j].count(a[i] - );
if (_bit) {
ans += 1LL * _num * (tar - _bit_tar);
bit[j].insert(a[i]);
}
else {
ans += 1LL * _num * _bit_tar;
}
}
}
cout << ans << endl;
return ;
}