Codeforces 734E. Anton and Tree 搜索

时间:2021-01-30 23:13:09
E. Anton and Tree
time limit per test:

3 seconds

memory limit per test

:256 megabytes

input:standard input
output:

standard output

Anton is growing a tree in his garden. In case you forgot, the tree is a connected acyclic undirected graph.

There are n vertices in the tree, each of them is painted black or white. Anton doesn't like multicolored trees, so he wants to change the tree such that all vertices have the same color (black or white).

To change the colors Anton can use only operations of one type. We denote it as paint(v), where v is some vertex of the tree. This operation changes the color of all vertices u such that all vertices on the shortest path from v to u have the same color (including v andu). For example, consider the tree

Codeforces 734E. Anton and Tree 搜索

and apply operation paint(3) to get the following:

Codeforces 734E. Anton and Tree 搜索

Anton is interested in the minimum number of operation he needs to perform in order to make the colors of all vertices equal.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n integers colori (0 ≤ colori ≤ 1) — colors of the vertices. colori = 0 means that the i-th vertex is initially painted white, while colori = 1 means it's initially painted black.

Then follow n - 1 line, each of them contains a pair of integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi) — indices of vertices connected by the corresponding edge. It's guaranteed that all pairs (ui, vi) are distinct, i.e. there are no multiple edges.

Output

Print one integer — the minimum number of operations Anton has to apply in order to make all vertices of the tree black or all vertices of the tree white.

Examples
input
11
0 0 0 1 1 0 1 0 0 1 1
1 2
1 3
2 4
2 5
5 6
5 7
3 8
3 9
3 10
9 11
output
2
input
4
0 0 0 0
1 2
2 3
3 4
output
0
Note

In the first sample, the tree is the same as on the picture. If we first apply operation paint(3) and then apply paint(6), the tree will become completely black, so the answer is 2.

In the second sample, the tree is already white, so there is no need to apply any operations and the answer is 0.

题目链接:http://codeforces.com/contest/734/problem/E


题意:给你一棵黑白树,每次paint(v)操作可以指定任何一个节点v,然后使得这个节点周围的同色连通块变色。问你最少花费多少次,使得整个树都是一个颜色。

思路:因为是同色联通块一起变色,所以把同色联通块缩成一个点。那个就成了一棵黑白相间的树。最少只需要把这棵树的直径(长度为L)的中点变换L/2次。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+;
int n,c[maxn];
vector<int> G[maxn];
pair<int,int> dfs(int u,int fa,int deep)
{
pair<int,int> tmp=make_pair(deep,u);
for(int i=; i<G[u].size(); i++)
{
int v=G[u][i];
if(v==fa)continue;
if(c[v]!=c[u]) tmp=max(tmp,dfs(v,u,deep+));
else tmp=max(tmp,dfs(v,u,deep));
}
return tmp;
}
int main()
{
scanf("%d",&n);
for(int i=; i<=n; i++)scanf("%d",&c[i]);
for(int i=; i<n; i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
pair<int,int> tmp=dfs(,-,);
tmp=dfs(tmp.second,-,);
cout<<tmp.first/<<endl;
}

DFS

Codeforces 734E. Anton and Tree 搜索的更多相关文章

  1. Codeforces 734E Anton and Tree&lpar;缩点&plus;树的直径&rpar;

    题目链接: Anton and Tree 题意:给出一棵树由0和1构成,一次操作可以将树上一块相同的数字转换为另一个(0->1 , 1->0),求最少几次操作可以把这棵数转化为只有一个数字 ...

  2. CodeForces 734E Anton and Tree

    $dfs$缩点,树形$dp$. 首先将连通块缩点,缩点后形成一个黑白节点相间的树.接下来的任务就是寻找一个$root$,使这棵树以$root$为根,树的高度是最小的(也就是一层一层染色).树形$dp$ ...

  3. Codeforces Round &num;379 &lpar;Div&period; 2&rpar; E&period; Anton and Tree 缩点 直径

    E. Anton and Tree 题目连接: http://codeforces.com/contest/734/problem/E Description Anton is growing a t ...

  4. Codeforces Round &num;379 &lpar;Div&period; 2&rpar; E&period; Anton and Tree —— 缩点 &plus; 树上最长路

    题目链接:http://codeforces.com/contest/734/problem/E E. Anton and Tree time limit per test 3 seconds mem ...

  5. Codeforces Round &num;379 &lpar;Div&period; 2&rpar; E&period; Anton and Tree 树的直径

    E. Anton and Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  6. Anton and Tree

    Anton and Tree 题目链接:http://codeforces.com/contest/734/problem/E DFS/BFS 每一次操作都可以使连通的结点变色,所以可以将连通的点缩成 ...

  7. Codeforces 461B Appleman and Tree&lpar;木dp&rpar;

    题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...

  8. Codeforces 1129 E&period;Legendary Tree

    Codeforces 1129 E.Legendary Tree 解题思路: 这题好厉害,我来复读一下官方题解,顺便补充几句. 首先,可以通过询问 \(n-1​\) 次 \((S=\{1\},T=\{ ...

  9. Codeforces 280C Game on tree【概率DP】

    Codeforces 280C Game on tree LINK 题目大意:给你一棵树,1号节点是根,每次等概率选择没有被染黑的一个节点染黑其所有子树中的节点,问染黑所有节点的期望次数 #inclu ...

随机推荐

  1. Akka&period;net路径里的user

    因为经常买双色球,嫌每次对彩票号麻烦,于是休息的时候做了个双色球兑奖的小程序,做完了发现业务还挺复杂的,于是改DDD重做设计,拆分服务,各种折腾...,不过这和本随笔没多大关系,等差不多了再总结一下, ...

  2. &lbrack;UCSD白板题&rsqb; Huge Fibonacci Number modulo m

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  3. 出栈入栈动画demo

    项目做了一个切换界面动画的功能,用到了出栈入栈的,写了一个demo package com.myron.stackview; import java.util.Stack; import androi ...

  4. Spring 3 来创建 RESTful Web Services

    Spring 3 创建 RESTful Web Services 在 Java™ 中,您可以使用以下几种方法来创建 RESTful Web Service:使用 JSR 311(311)及其参考实现 ...

  5. J2SE知识点摘记&lpar;十七&rpar;

    1.        Applet Applet的生命周期分为四个阶段,各阶段分别由init,start,stop和destroy四种方法来具体体现. public void init() 此方法通知A ...

  6. JDK源码学习系列03----StringBuffer&plus;StringBuilder

                         JDK源码学习系列03----StringBuffer+StringBuilder 由于前面学习了StringBuffer和StringBuilder的父类A ...

  7. LCA&lpar;最近公共祖先)之倍增算法

    概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...

  8. javascript从数组中删除一个元素

    Array.prototype.remove = function(val) { var index = this.indexOf(val); if (index > -1) { this.sp ...

  9. 读《图解HTTP》有感-(HTTP首部)

    写在前面 该章节是对请求报文及响应报文的首部信息进行解析.通过该章节的学习,相信大家对首部结构,及各个首部字段的作用有个基本的了解 正文 HTTP报文由HTTP报文首部.空行以及HTTP报文主体组成. ...

  10. iOS - keychain 详解及变化

    keychain介绍 iOS keychain 是一个相对独立的空间,保存到keychain钥匙串中的信息不会因为卸载/重装app而丢失, .相对于NSUserDefaults.plist文件保存等一 ...