BZOJ 1831 & 就是一个DP....

时间:2025-01-07 21:33:20

题意:

  比如说,4 2 1 3 3里面包含了5个逆序对:(4, 2), (4, 1), (4, 3), (4, 3), (2, 1)。 可惜的是,由于年代久远,这些数字里有一部分已经模糊不清了,为了方便记录,小可可用“-1”表示它们。比如说,4 2 -1 -1 3 可能原来是4 2 1 3 3,也可能是4 2 4 4 3,也可能是别的样子。 能不能推断出这些数字里最少能有多少个逆序对

SOL:

  一眼就觉得显然填的数字单调不降...也不想去证明了,感觉很对的样子就不想那么多...

  但是DP的实现上还是弱的一笔啊...最弱的就是DP了..唉...本来还想维护两棵线段树加加减减...

  被数据结构*了...然而只要暴力维护就好了...日...

  双倍经验很开心

Code:

  

/*==========================================================================
# Last modified: 2016-03-16 20:57
# Filename: 2190.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 100000
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
int a[10005],pos[10005];
int small[10005][105],big[10005][105],dp[10005][105];
int main(){
int n,k,cnt=0;
memset(big,0,sizeof(big));
memset(small,0,sizeof(small));
memset(dp,0x7f,sizeof(dp));
int ans=INF;
read(n); read(k);
FORP(i,1,n){
read(a[i]);
if(a[i]==-1) pos[++cnt]=i;
}
FORP(i,2,n){
FORP(j,1,k){
big[i][j]=big[i-1][j];
if(a[i-1]>j) big[i][j]++;
}
}
FORM(i,n-1,1){
FORP(j,1,k){
small[i][j]=small[i+1][j];
if(a[i+1]<j && a[i+1]!=-1) small[i][j]++;
}
}
int num=0;
FORP(i,1,n) num+=big[i][a[i]];
FORP(i,1,k) dp[1][i]=big[pos[1]][i]+small[pos[1]][i];
FORP(i,2,cnt)
FORP(j,1,k)
FORP(p,1,j)dp[i][j]=min(dp[i][j],dp[i-1][p]+big[pos[i]][j]+small[pos[i]][j]);
FORP(i,1,k) ans=min(ans,dp[cnt][i]);
ans=(ans==INF)?0:ans;
printf("%d\n",ans+num);
return 0;
}