Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But Evil
Boy Genius Jack Spicer is also there. Omi and Jack found the Shen Gong Wu at the same time so they
rushed for it but alas they touched it at the same time. Then what? It is time for “Xiaolin Showdown”.
Jack challenged Omi to play a game. The game is simple! There will be an N ∗ N board where
each cell in the board contains some number. They have to assign numbers to each row and column
separately so that w(i, j) ≤ row(i) + col(j) where w(i, j) is the number assigned to the cell located
at i-th row and j-th column, row(i) is the number assigned to i-th row and col(j) is the number
∑
assigned to j-th column. That is simple isnt it? Well . . . the main part is that you have to minimize
1≤i≤n
(row(i) + col(j)).
Jack has taken his favorite “Monkey Stuff” and Omi has taken “Golden Tiger Claw”. With the help
of this “Golden Tiger Claw”, he can go anywhere in the world. He has come to you and seeking your
help. Jack is using his computer to solve this problem. So do it quick! Find the most optimal solution
for Omi so that you can also be part of history in saving the world from the darkness of evil.
Input
Input contains 15 test cases. Each case starts with N. Then there are N lines containing N numbers
each. All the numbers in input is positive integer within the limit 100 except N which can be at most
500.
Output
For each case in the first line there will be N numbers, the row assignments. In the next line there
will N column assignment. And at the last line the minimum sum should be given. If there are several
possible solutions give any.
Note: Be careful about the output format. You may get Wrong Answer if you don’t output properly.
Sample Input
2
1 1
1 1
Sample Output
1 1
0 0
2
【题意】
给出一个n*n的矩阵(n<=500)给每一行x[i],每一列标号y[i],使得对任意a[i][j],x[i]+y[j]>=a[i][j]求行标与列标和最小
【分析】
事实上和最佳匹配没什么关系,但是我们进行KM算法的时候,有w(i,j)<=row(i)+col(j),并且算出来的顶标之和是最小的,so。。。
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 510
#define Maxm 250010
#define INF 0xfffffff struct node
{
int x,y,c,next;
}t[Maxm];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} int a[Maxn][Maxn];
int n; int lx[Maxn],ly[Maxn],match[Maxn],slack[Maxn];
bool visx[Maxn],visy[Maxn]; bool ffind(int x)
{
visx[x]=;
for(int i=first[x];i;i=t[i].next) if(!visy[t[i].y])
{
int y=t[i].y;
if(t[i].c==lx[x]+ly[y])
{
visy[y]=;
if(!match[y]||ffind(match[y]))
{
match[y]=x;
return ;
}
}
else slack[y]=mymin(slack[y],lx[x]+ly[y]-t[i].c);
}
return ;
} void solve()
{
memset(match,,sizeof(match));
memset(lx,,sizeof(lx));
memset(ly,,sizeof(ly));
for(int i=;i<=n;i++)
for(int j=first[i];j;j=t[j].next) lx[i]=mymax(lx[i],t[j].c); for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
slack[j]=INF;
while()
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
if(ffind(i)) break;
int delta=INF;
for(int j=;j<=n;j++)
{
if(!visy[j])
{
delta=mymin(delta,slack[j]);
}
}
if(delta==INF) return;
for(int j=;j<=n;j++)
{
if(visx[j]) lx[j]-=delta;
if(visy[j]) ly[j]+=delta;
else slack[j]-=delta;
}
}
}
} int main()
{
while(scanf("%d",&n)!=EOF)
{
len=;
memset(first,,sizeof(first));
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int x;
scanf("%d",&x);
ins(i,j,x);
}
solve();
for(int i=;i<=n;i++) printf("%d ",lx[i]);printf("\n");
for(int i=;i<=n;i++) printf("%d ",ly[i]);printf("\n");
int ans=;
for(int i=;i<=n;i++) ans+=lx[i]+ly[i];
printf("%d\n",ans);
}
return ;
}
[UVA 11383]
2016-10-27 15:13:52
【UVA 11383】 Golden Tiger Claw (KM算法副产物)的更多相关文章
-
UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)
UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列 ...
-
UVA 11383 Golden Tiger Claw 金虎爪(KM算法)
题意: 给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立.先输row ...
-
【KM算法】UVA 11383 Golden Tiger Claw
题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...
-
UVA11383 Golden Tiger Claw —— KM算法
题目链接:https://vjudge.net/problem/UVA-11383 题解: 根据KM()算法,标杆满足:l(x) + l(y) >= w(x, y) . 当求完最大权匹配之后,所 ...
-
UVA 11383 Golden Tiger Claw 题解
题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...
-
UVA11383 Golden Tiger Claw KM算法
题目链接:传送门 分析 这道题乍看上去没有思路,但是我们仔细一想就会发现这道题其实是一个二分图最大匹配的板子 我们可以把这道题想象成将男生和女生之间两两配对,使他们的好感度最大 我们把矩阵中的元素\( ...
-
Uva - 11383 - Golden Tiger Claw
题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...
-
UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)
题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...
-
uva11383 Golden Tiger Claw 深入理解km算法
/** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...
随机推荐
-
C语言程序设计第11次作业
一.本次课主要内容: 本章主要介绍指针相关的基础知识,本节课的主要如下 (1)通过示例"密码开锁"引入指针的概念和主要知识点,分析了密码开锁的过程来说明变量.内存单元和地址之间的关 ...
-
ashx 文件 与js文件数据交互
//js代码 //城市下拉列表 $("#selPro").change(function() { var option = ...
-
放松时刻——C#分割字符串
让我们来练习一下字符串的分割~把话倒过来说: private void change_button_Click(object sender, EventArgs e) { var after_text ...
-
教你快速写出多线程Junit单元测试用例 - GroboUtils
摘自: http://mushiqianmeng.blog.51cto.com/3970029/897786/ 本文出自One Coder博客,转载请务必注明出处: http://www.coderl ...
-
算法Sedgewick第四版-第1章基础-001递归
一. 方法可以调用自己(如果你对递归概念感到奇怪,请完成练习 1.1.16 到练习 1.1.22).例如,下面给出了 BinarySearch 的 rank() 方法的另一种实现.我们会经常使用递归, ...
-
HDU 4122 Alice&#39;s mooncake shop
单调队列,裸的!!坑死了,说好的“All the orders are sorted by the time in increasing order. 呢,我就当成严格上升的序列了,于是就各种错.测试 ...
-
android开发之res下的menu (xml+代码的形式)
转载请注明出处:http://blog.csdn.net/fth826595345/article/details/9199393 先来看Menu XML文件如何编写: <?xml versi ...
-
线性表的顺序存储结构的实现及其应用(C/C++实现)
存档--- #include <stdio.h> #include <stdlib.h> typedef int ElemType; #define MAXSIZE 10 #i ...
-
dojo表格分页之各个参数代表的意义(一)
下面是dojo表格分页参数代表的意义 //每页可以显示10/15/20/25/30条记录 (1)pageSizes: [10, 15, 20, 25,30], //每页显示的记录从多少到多少,共多少条 ...
-
004 使用scrapy框架爬虫
0. 建立housePro的scrapy爬虫框架 # 1. 在终端输入,建立housePro项目scrapy startproject housePro# 2. 进入houseProcd houseP ...