RMQ 与 LCA-ST算法

时间:2022-03-22 09:57:40

RMQ算法

区间求最值的算法,用区间动态规划(nlogn)预处理,查询O(1)

http://blog.csdn.net/y990041769/article/details/38405063

(POJ 3264)

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<queue>
#include<string>
#include<sstream>
#define eps 1e-9
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define MAXN 1005
#define MAXM 40005
#define INF 0x3fffffff
#define PB push_back
#define MP make_pair
#define X first
#define Y second
#define clr(x,y) memset(x,y,sizeof(x));
using namespace std;
typedef long long LL;
int i,j,k,n,m,x,y,T,ans,big,cas,num,len;
bool flag;
int a[],mm[][],mi[][]; void rmq()
{
for (int i=;i<=n;i++)
{
mm[i][]=mi[i][]=a[i];
}
for (int j=;(<<j)<=n;j++)
{
for (int i=;i+(<<j)-<=n;i++)
{
mm[i][j]=max(mm[i][j-],mm[i+(<<(j-))][j-]);
mi[i][j]=min(mi[i][j-],mi[i+(<<(j-))][j-]);
}
}
} int getans(int l,int r)
{
int k=;
while ((<<(k+))<=r-l+) k++;
int ans1=max(mm[l][k],mm[r-(<<k)+][k]);
int ans2=min(mi[l][k],mi[r-(<<k)+][k]);
return ans1-ans2;
} int main()
{
while (~scanf("%d%d",&n,&m))
{
clr(mm,);clr(mi,);
for (i=;i<=n;i++) scanf("%d",&a[i]);
rmq();
for (i=;i<=m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",getans(l,r));
}
} return ;
}

大概看了看求LCA的ST算法,其思路很简单,就是树形转线性,

如果求a与b的最近公共祖先,就是确定first[a]~first[b]中深度最小的点,即求区间最小值,用RMQ维护即可。

http://blog.csdn.net/y990041769/article/details/40887469

hdu2586

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<vector>
#include<queue>
#include<string>
#include<sstream>
#define eps 1e-9
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define MAXN 80005
#define MAXM 80005
#define INF 0x3fffffff
#define PB push_back
#define MP make_pair
#define X first
#define Y second
#define clr(x,y) memset(x,y,sizeof(x));
using namespace std;
typedef long long LL;
int i,j,k,n,m,x,y,T,ans,big,cas,num,len;
bool flag; int edge,head[MAXN],id[MAXN],dir[MAXN],first[MAXN],R[MAXN],vis[MAXN],tot;
int dp[MAXN][];
struct edgenode
{
int to,next,w;
} G[MAXM]; void add_edge(int x,int y,int w)
{
G[edge].to=y;
G[edge].w=w;
G[edge].next=head[x];
head[x]=edge++;
} void dfs(int u,int dep)
{
vis[u]=true;id[++tot]=u;
first[u]=tot;R[tot]=dep;
for (int i=head[u];i!=-;i=G[i].next)
{
int v=G[i].to;
if (!vis[v])
{
int w=G[i].w;
dir[v]=dir[u]+w;
dfs(v,dep+);
id[++tot]=u; R[tot]=dep;
}
}
} void ST(int n)
{
for (int i=;i<=n;i++)
{
dp[i][]=i;
}
for (int j=;(<<j)<=n;j++)
{
for (int i=;i+(<<j)-<=n;i++)
{
int a=dp[i][j-],b=dp[i+(<<(j-))][j-];
if (R[a]<R[b]) dp[i][j]=a; else dp[i][j]=b;
}
}
} int RMQ(int l,int r)
{
int k=;
while ((<<(k+))<=r-l+) k++;
int a=dp[l][k],b=dp[r-(<<k)+][k];
return R[a]<R[b]?a:b;
} int LCA(int u,int v)
{
int x=first[u],y=first[v];
if (x>y) swap(x,y);
return id[RMQ(x,y)];
} int main()
{
scanf("%d",&T);
while(T--)
{
memset(head,-,sizeof(head));
edge=;tot=;
scanf("%d%d",&n,&m);
for (i=;i<n;i++)
{
int x,y,d;
scanf("%d%d%d",&x,&y,&d);
add_edge(x,y,d);
add_edge(y,x,d);
}
memset(vis,,sizeof(vis));
dfs(,);
ST(*n-);
for (i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
int lca=LCA(u,v);
printf("%d\n",dir[u]+dir[v]-*dir[lca]);
}
}
return ;
}