scrapy框架中Item Pipeline用法

时间:2023-03-08 18:08:01
scrapy框架中Item Pipeline用法

scrapy框架中item pipeline用法

当Item 在Spider中被收集之后,就会被传递到Item Pipeline中进行处理

每个item pipeline组件是实现了简单的方法的python类,负责接收到item并通过它执行一些行为,同时也决定此Item是否继续通过pipeline,或者被丢弃而不再进行处理

item pipeline的主要作用:

  1. 清理html数据
  2. 验证爬取的数据
  3. 去重并丢弃
  4. 将爬取的结果保存到数据库中或文件中

持久化存储

import pymysql
import redis # 只要涉及到持久化相关的操作,必须写在管道文件中 # 管道文件:需要接收爬虫文件提交过来的数据,并对数据进行持久化存储(IO操作)
class ThreePipeline(object):
fp = None # 只会被执行一次(开始爬虫的时候执行一次)
def open_spider(self, spider):
print('开始爬虫')
self.fp = open('./job.txt', "w") # 链接数据库啊,数据库的写入等操作 # 只能处理item
# 和items联合使用的
# process_item核心方法被调用 将item中数据写入磁盘本地
# 爬虫每提交一次item,该方法就会被调用一次
def process_item(self, item, spider):
# 爬虫每提交一次item,该方法就会被调用一次
# print(item['company'])
self.fp.write(item['title'] + "\t" + item['salary'] + '\t' + item['salary'] + '\n') return item def close_spider(self, spider):
print('爬虫结束')
self.fp.close() # 注意:默认情况下管道机制并没有开启,需要手动在配置文件中手动开启 # 使用管道进行持久化存储的流程:
"""
1 获取解析到的数据值
2 将解析的数据值存储到item对象(item类中进行相关属性的声明)
3 通过yield关键字将item提交到管道
4 管道文件中进行持久化存储代码的编写(process_item)
5 在配置文件中开启管道
""" # 存入mysql
class MysqlPipeline(object):
conn = None
cursor = None def open_spider(self, spider):
print("mysql-start")
self.conn = pymysql.Connect(host='127.0.0.1', port=3306, user='root', password='', db='spider')
print(self.conn) def process_item(self, item, spider):
self.cursor = self.conn.cursor()
sql = 'insert into boss values ("%s", "%s", "%s")' % (item['title'], item['salary'], item['company'])
try:
self.cursor.execute(sql)
self.conn.commit()
except Exception as e:
print(e)
self.conn.rollback() return item def close_spider(self, spider):
self.cursor.close()
self.conn.close()
print('mysql-end') # 存入redis
class RedisPipeline(object):
conn = None def open_spider(self, spider):
print('redis-start')
self.conn = redis.Redis(host='127.0.0.1', port=6379) def process_item(self, item, spider):
dic = {
"title": item['title'],
"salary": item['salary'],
"company": item['company']
}
self.conn.lpush('job_info', dic) return item def close_spider(self, spider):
print('redis-end') # 注意: 一定要保证每一个管道类的process_item方法有返回值

持久化存储-mysql-文件-redis

编写自己的item pipeline

process_item(self,item,spider)

每个item piple组件是一个独立的pyhton类,必须实现以process_item(self,item,spider)方法
每个item pipeline组件都需要调用该方法,这个方法必须返回一个具有数据的dict,或者item对象,或者抛出DropItem异常,被丢弃的item将不会被之后的pipeline组件所处理

下面的方法也可以选择实现

open_spider(self,spider)
表示当spider被开启的时候调用这个方法

close_spider(self,spider)
当spider挂去年比时候这个方法被调用

from_crawler(cls,crawler)
这个和我们在前面说spider的时候的用法是一样的,可以用于获取settings配置文件中的信息,需要注意的这个是一个类方法,用法例子如下:

scrapy框架中Item Pipeline用法

一些item pipeline的使用例子(官网说明)

例子1
这个例子实现的是判断item中是否包含price以及price_excludes_vat,如果存在则调整了price属性,都让item['price'] = item['price'] * self.vat_factor,如果不存在则返回DropItem

from scrapy.exceptions import DropItem

class PricePipeline(object):

    vat_factor = 1.15

    def process_item(self, item, spider):
if item['price']:
if item['price_excludes_vat']:
item['price'] = item['price'] * self.vat_factor
return item
else:
raise DropItem("Missing price in %s" % item)

例子2
这个例子是将item写入到json文件中

import json

class JsonWriterPipeline(object):

    def __init__(self):
self.file = open('items.jl', 'wb') def process_item(self, item, spider):
line = json.dumps(dict(item)) + "\n"
self.file.write(line)
return item

例子3
将item写入到MongoDB,同时这里演示了from_crawler的用法

import pymongo

class MongoPipeline(object):

    collection_name = 'scrapy_items'

    def __init__(self, mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db @classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri=crawler.settings.get('MONGO_URI'),
mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
) def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db] def close_spider(self, spider):
self.client.close() def process_item(self, item, spider):
self.db[self.collection_name].insert(dict(item))
return item

例子4:去重
一个用于去重的过滤器,丢弃那些已经被处理过的item,假设item有一个唯一的id,但是我们spider返回的多个item中包含了相同的id,去重方法如下:这里初始化了一个集合,每次判断id是否在集合中已经存在,从而做到去重的功能

from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):

    def __init__(self):
self.ids_seen = set() def process_item(self, item, spider):
if item['id'] in self.ids_seen:
raise DropItem("Duplicate item found: %s" % item)
else:
self.ids_seen.add(item['id'])
return item

启用一个item Pipeline组件

在settings配置文件中y9ou一个ITEM_PIPELINES的配置参数,例子如下:

ITEM_PIPELINES = {
'myproject.pipelines.PricePipeline': 300,
'myproject.pipelines.JsonWriterPipeline': 800,
}

每个pipeline后面有一个数值,这个数组的范围是0-1000,这个数值确定了他们的运行顺序,数字越小越优先