题意:有n个点,问其中某一对点的距离最小是多少
分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最小值
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> const int N = 1e5 + 5;
const double INF = 1e100;
struct Point {
double x, y;
bool flag;
bool operator < (const Point &rhs) const {
return x < rhs.x;
}
};
Point point[N*2];
int idy[N*2];
int n; bool cmp_y(int i, int j) {
return point[i].y < point[j].y;
} double squ(double x) {
return x * x;
} double get_dist(Point &a, Point &b) {
if (a.flag == b.flag) {
return INF;
}
return sqrt (squ (a.x - b.x) + squ (a.y - b.y));
} double min_dist(int left, int right) {
if (left == right) {
return INF;
}
else if (right - left == 1) {
return get_dist (point[left], point[right]);
} else {
int mid = left + right >> 1;
double ret = std::min (min_dist (left, mid), min_dist (mid + 1, right));
if (ret == 0) {
return ret;
}
int endy = 0;
for (int i=mid; i>=left&&point[mid].x-point[i].x<=ret; --i) {
idy[endy++] = i;
}
for (int i=mid+1; i<=right&&point[i].x-point[mid+1].x<=ret; ++i) {
idy[endy++] = i;
}
std::sort (idy, idy+endy, cmp_y);
for (int i=0; i<endy; ++i) {
for (int j=i+1; j<endy&&point[j].y-point[i].y<ret; ++j) {
ret = std::min (ret, get_dist (point[i], point[j]));
}
}
return ret;
}
} int main() {
int T; scanf ("%d", &T);
while (T--) {
scanf ("%d", &n);
for (int i=0; i<2*n; ++i) {
scanf ("%lf%lf", &point[i].x, &point[i].y);
if (i < n) {
point[i].flag = false;
} else {
point[i].flag = true;
}
}
std::sort (point, point+2*n);
printf ("%.3f\n", min_dist (0, 2 * n - 1));
} return 0;
}
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> const int N = 1e5 + 5;
const double INF = 1e100;
struct Point {
double x, y;
};
Point point[N], py[N];
int n; bool cmp_x(const Point &a, const Point &b) {
return a.x < b.x;
}
bool cmp_y(const Point &a, const Point &b) {
return a.y < b.y;
} double squ(double x) {
return x * x;
} double get_dist(Point &a, Point &b) {
return sqrt (squ (a.x - b.x) + squ (a.y - b.y));
} double min_dist(int left, int right) {
if (left + 1 == right) {
return get_dist (point[left], point[right]);
} else if (left + 2 == right) {
return std::min (get_dist (point[left], point[left+1]),
std::min (get_dist (point[left], point[right]), get_dist (point[left+1], point[right])));
} else {
int mid = left + right >> 1;
double ret = std::min (min_dist (left, mid), min_dist (mid + 1, right));
int cnt = 0;
for (int i=mid; i>=left&&point[mid].x-point[i].x<=ret; --i) {
py[cnt++] = point[i];
}
for (int i=mid+1; i<=right&&point[i].x-point[mid+1].x<=ret; ++i) {
py[cnt++] = point[i];
}
std::sort (py, py+cnt, cmp_y);
for (int i=0; i<cnt; ++i) {
for (int j=i+1; j<cnt&&py[j].y-py[i].y<ret; ++j) {
ret = std::min (ret, get_dist (py[i], py[j]));
}
}
return ret;
}
} int main() {
while (scanf ("%d", &n) == 1) {
if (!n) {
break;
}
for (int i=0; i<n; ++i) {
scanf ("%lf%lf", &point[i].x, &point[i].y);
}
std::sort (point, point+n, cmp_x);
printf ("%.2f\n", min_dist (0, n - 1) / 2);
} return 0;
}
最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design的更多相关文章
-
Hdoj 1007 Quoit Design 题解
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
-
HDU 1007 Quoit Design(经典最近点对问题)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...
-
(洛谷 P1429 平面最近点对(加强版) || 洛谷 P1257 || Quoit Design HDU - 1007 ) &;&; Raid POJ - 3714
这个讲的好: https://phoenixzhao.github.io/%E6%B1%82%E6%9C%80%E8%BF%91%E5%AF%B9%E7%9A%84%E4%B8%89%E7%A7%8D ...
-
杭电OJ——1007 Quoit Design(最近点对问题)
Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...
-
hdu 1007 Quoit Design (最近点对问题)
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
-
HDU 1007 Quoit Design【计算几何/分治/最近点对】
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
-
hdu 1007 Quoit Design 分治求最近点对
Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
-
poj 3714 Raid(平面最近点对)
Raid Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7473 Accepted: 2221 Description ...
-
POJ 3714 Raid(计算几何の最近点对)
Description After successive failures in the battles against the Union, the Empire retreated to its ...
随机推荐
-
怎么使用CKEDITOR
出于工作需求,自己在网上找了个文本编辑器控件, 网址是http://ckeditor.com/ 怎么使用? 先插入脚本<script type="text/javascript&quo ...
-
2016HUAS_ACM暑假集训3F - Jungle Roads
这个题目属于最小生成树问题,可以用Prim,也可以用Kruskal(还没试).题意简单直接,给你一个图,求出它最小生成树的权值. 题目最有趣的地方就是图的顶点是字母,稍微处理一下就好了. Sample ...
-
Atitit.会员卡(包括银行卡)api的设计
Atitit.会员卡(包括银行卡)api的设计 1. 银行卡的本质是一种商业机构会员卡1 2. 会员卡号结构组成1 2.1. ●前六位是:发行者标识代码 Issuer Identification N ...
-
深入浅出ES6(九):学习Babel和Broccoli,马上就用ES6
作者 Jason Orendorff github主页 https://github.com/jorendorff 现在,我们将向你分步展示如何做到的这一切.上面提及的工具被称为转译器,你可以将它 ...
-
Web性能优化系列
web性能优化之重要,这里并不打算赘述.本系列课程将带领大家认识.熟悉.深刻体会并且懂得如果去为不同的站点做性能优化 同时,本系列将还会穿插浏览器兼容性相关问题的解决方案,因为在我看来,兼容性同样属于 ...
-
Qt串口通信
1. Qt串口通信类QSerialPort 在Qt5的的更新中,新增了串口通信的相关接口类QSerialPort,这使得在开发者在使用Qt进行UI开发时,可以更加简单有效地实现串口通信的相关功能. 开 ...
-
git 第一次提交代码
git init git add README.md git commit -m "first commit" git remote add origin https://git. ...
-
tkinter学习系列之(七)Frame与Labelframe 控件
目录 目录 前言 (一)Frame (二)Labelframe 目录 前言 Frame与Labelframe都是容器,用来存放其他控件,也是用来更好的管理布局. 我一般是用来存放一组相关的控件,让Fr ...
-
hihocoder 九十八周 搜索一 24点
题目1 : 搜索一·24点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho都在家待着. 在收拾完房间时,小Ho偶然发现了一副扑克,于是两人考虑用这副 ...
-
PyalgoTrade 计算权重平滑平均价(三)
本节介绍如何使用收盘价的SMA价格的策略 from pyalgotrade import strategy from pyalgotrade.barfeed import yahoofeed from ...