JAVA代码根据经纬度范围计算WGS84与谷歌全球墨卡托包含的切片数目与拼接图像像素尺寸

时间:2025-01-04 14:37:56

根据项目需求编写的代码。

适用场景:在网络地图上,比如天地图与谷歌地图,用户用鼠标在地图上拉一个矩形框,希望下载该矩形框内某一层级的瓦片数据,并将所有瓦片拼接成一个完整的,包含地理坐标的tif图像。

那么在下载瓦片与拼接瓦片之前,用户希望能看到待下载的瓦片数量与待拼接图像的像素尺寸,再决定是否拼接。

该java代码根据该矩形框的经纬度范围与用户指定的瓦片层级,计算需要下载的瓦片数量与待拼接结果图像的像素尺寸。

支持EPSG4326经纬度与EPSG3857谷歌全球墨卡托投影。经纬度瓦片切图规则与天地图相同,从第一层开始切,第一层包含两个瓦片。谷歌全球墨卡托从第0层开始切,第0层一个瓦片。

public class Main {

    private void LonLatToTile(double lon,double lat,int zoom,int[] txy)
{
double resFact = 180.0 / 256.0;
double[] pxy = new double[]{0.0,0.0};
double res = resFact / Math.pow(2,(double)zoom);
pxy[0] = (180.0 + lon) / res;
pxy[1] = (90.0 - lat) / res; txy[0] = (int)(Math.ceil(pxy[0]/256.0) - 1);
txy[1] = (int)(Math.ceil(pxy[1]/256.0) - 1);
} private void LatLonToMeters(double lon, double lat,double[] mxy)
{
double m_originShift = 2 * 3.141592653589793 * 6378137 / 2.0; mxy[0] = lon * m_originShift / 180.0;
mxy[1] = Math.log( Math.tan((90 + lat) * 3.141592653589793 / 360.0 )) / (3.141592653589793 / 180.0); mxy[1] = mxy[1] * m_originShift / 180.0;
} private void MetersToTile(double mx, double my, int zoom, int[] txy)
{
double m_initialResolution = 2 * 3.141592653589793 * 6378137 / 256;
double m_originShift = 2 * 3.141592653589793 * 6378137 / 2.0; double res = m_initialResolution / Math.pow(2,(double)zoom);
double px = (mx + m_originShift) / res;
double py = (m_originShift - my) / res; txy[0] = (int)( Math.ceil( px / (float)(256) ) - 1 );
txy[1] = (int)( Math.ceil( py / (float)(256) ) - 1 );
} // 计算经纬度输出瓦片数量与待拼接图像像素尺寸
public int getGeodeticSize(double minLon, double maxLon, double minLat, double maxLat, int zoom, int[] pixSize){ int[] tminxy = new int[]{0,0};
int[] tmaxxy = new int[]{0,0}; LonLatToTile(minLon,minLat,zoom-1,tminxy);
LonLatToTile(maxLon,maxLat,zoom-1,tmaxxy); pixSize[0] = (1+Math.abs(tmaxxy[0]-tminxy[0])) * 256;
pixSize[1] = (1+Math.abs(tmaxxy[1]-tminxy[1])) * 256; int tnum = (1+Math.abs(tmaxxy[0]-tminxy[0])) * (1+Math.abs(tmaxxy[1]-tminxy[1])); return tnum;
}
// 计算谷歌投影输出瓦片数量与待拼接图像像素尺寸
public int getMercatorSize(double minLon, double maxLon, double minLat, double maxLat, int zoom, int[] pixSize){ double[] oULxy = new double[]{0,0};
double[] oDRxy = new double[]{0,0};
LatLonToMeters(minLon,maxLat,oULxy);
LatLonToMeters(maxLon,minLat,oDRxy);
double ominx = oULxy[0];
double omaxx = oDRxy[0];
double ominy = oDRxy[1];
double omaxy = oULxy[1]; int[] tminxy= new int[]{0,0};
int[] tmaxxy = new int[]{0,0};
MetersToTile(ominx,ominy, zoom, tminxy);
MetersToTile(omaxx,omaxy, zoom, tmaxxy); pixSize[0] = (1+Math.abs(tmaxxy[0]-tminxy[0])) * 256;
pixSize[1] = (1+Math.abs(tmaxxy[1]-tminxy[1])) * 256; int tnum = (1+Math.abs(tmaxxy[0]-tminxy[0])) * (1+Math.abs(tmaxxy[1]-tminxy[1])); return tnum;
} public static void main(String[] args) {
System.out.println("Hello World!");
double minLon = 119.54384371341310;
double maxLon = 119.93413672204591;
double minLat = 33.068895415323247;
double maxLat = 33.433168890047206;
int zoom = 13; Main e=new Main(); int[] pixSize= new int[]{0,0};
int tnum;
tnum = e.getGeodeticSize(minLon, maxLon, minLat, maxLat, zoom, pixSize);
System.out.println("经纬度数据瓦片数:" + tnum + " 图像尺寸:" + pixSize[0] + "*" + pixSize[1]);
tnum = e.getMercatorSize(minLon, maxLon, minLat, maxLat, zoom, pixSize);
System.out.println("谷歌数据瓦片数:" + tnum + " 图像尺寸:" + pixSize[0] + "*" + pixSize[1]); } }
运行结果:

JAVA代码根据经纬度范围计算WGS84与谷歌全球墨卡托包含的切片数目与拼接图像像素尺寸