机器学习-学习笔记 神经网络

时间:2021-10-19 09:49:18

对数几率回归

考虑分类问题时使用对数几率回归。
在二分类问题中,其输出标记y(0, 1), 而在线性回归中,输出标记y是实值,所以我们需要将问题转为单位阶跃函数
机器学习-学习笔记  神经网络
机器学习-学习笔记  神经网络
但是可以看出,单位阶不连续,所以我们可以将函数转换为对数几率函数。
机器学习-学习笔记  神经网络
转化为
机器学习-学习笔记  神经网络
也可转换为
机器学习-学习笔记  神经网络

如何确定上述式子中的w和b

机器学习-学习笔记  神经网络
我们可以通过使用极大似然法来估计w和b,经典算法有梯度下降法牛顿法

线性判别分析

机器学习-学习笔记  神经网络
机器学习-学习笔记  神经网络

LDA的思想

机器学习-学习笔记  神经网络

先给定一个数据集机器学习-学习笔记  神经网络
具体定义如下
机器学习-学习笔记  神经网络
当满足思想的时候,可以得到下面这个式子。
机器学习-学习笔记  神经网络

类内散度矩阵

机器学习-学习笔记  神经网络

类间散度矩阵

机器学习-学习笔记  神经网络

最后可以得到如下式子,即我们所要求的式子

机器学习-学习笔记  神经网络

多分类学习

基本思路为“拆解法”(多分类拆解为多个二分类来进行求解)。

分为三种
1. 一对一
2. 一对其余
3. 多对多

机器学习-学习笔记  神经网络

ECOC

解码和编码
机器学习-学习笔记  神经网络

类别最后通过“编码矩阵”来指定。
机器学习-学习笔记  神经网络

纠错输出码

机器学习-学习笔记  神经网络

神经网络

学习是神经网络一种最重要也最令人注目的特点。在神经网络的发展进程中,学习算法的研究有着十分重要的地位。目前,人们所提出的神经网络模型都是和学习算法相应的。所以,有时人们并不去祈求对模型和算法进行严格的定义或区分。有的模型可以有多种算法。而有的算法可能可用于多种模型。在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如Bp网络,Hopfield网络,ART络和Kohonen网络中;Bp网络和Hopfield网络是需要教师信号才能进行学习的;而ART网络和Khonone网络则无需教师信号就可以学习。所谓教师信号,就是在神经网络学习中由外部提供的模式样本信号。

神经元模型

神经网络的基本组成单元是神经元,在数学上的神经元模型是和在生物学上的神经细胞对应的。或者说,人工神经网络理论是用神经元这种抽象的数学模型来描述客观世界的生物细胞的。
很明显,生物的神经细胞是神经网络理论诞生和形成的物质基础和源泉。这样,神经元的数学描述就必须以生物神经细胞的客观行为特性为依据。因此,了解生物神经细胞的行为特性就是一件十分重要而必须的事了。
神经网络的拓朴结构也是以生物学解剖中神经细胞互连的方式为依据的。对神经细胞相互作用情况的揭露也是十分重要的。
神经元是神经网络基本元素。只有了解神经元才能认识神经网络的本质。在这一节介绍神经元的生物学解剖,信息的处理与传递方式,工作功能以及其数学模型。

M-P神经元模型

这里引入M-P神经元模型。

我们可以概括出生物神经网络的假定特点:
1. 每个神经元都是一个多输入单输出的信息处理单元;
2. 神经元输入分兴奋性输入和抑制性输入两种类型;
3. 神经元具有空间整合特性和阈值特性;
4. 神经元输入与输出间有固定的时滞,主要取决于突触延搁

机器学习-学习笔记  神经网络

而M-P模型的6个特点:
1. 每个神经元都是一个多输入单输出的信息处理单元;
2. 神经元输入分兴奋性输入和抑制性输入两种类型;
3. 神经元具有空间整合特性和阈值特性;
4. 神经元输入与输出间有固定的时滞,主要取决于突触延搁;
5. 忽略时间整合作用和不应期;
6. 神经元本身是非时变的,即其突触时延和突触强度均为常数。

这里主要注意一下激活函数的概念即可。

机器学习-学习笔记  神经网络

详情请见M-P神经元模型

感知机与多层网络

感知机

感知机由二层神经元组成.
机器学习-学习笔记  神经网络

感知机只有输出层神经元进行激活函数的处理,只能解决线性问题。
机器学习-学习笔记  神经网络

如果需要解决线性问题,则考虑使用多层功能神经元.
机器学习-学习笔记  神经网络

多层网络

机器学习-学习笔记  神经网络
多叉树- -
分为输入层神经元和输出层神经元

这个模型很经典,训练的话,就是训练这个模型,删除多余的链接,还记得第一章的那个西瓜嘛- -

误差逆传播算法

在单层网络模型中,我们只需要简单的考虑线性模型即可, 但是在多层网络模型中,那简单的线性模型就完全不够了(配合感知机学习规则),我们需要用到误差逆传播算法(BP)。

BP

这里也称为反向传播算法。
BP算法(即反向传播算法)是在有导师指导下,适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。这是BP算法得以应用的基础。

机器学习-学习笔记  神经网络

BP工作流程
机器学习-学习笔记  神经网络

更新连接权和阈值示意图
机器学习-学习笔记  神经网络

全局最小与局部极小

注意,理解局部极小和全局最小的概念!
当遇到有多个局部极小的情况
机器学习-学习笔记  神经网络

其他神经网络

  • RBF(径向基网络)
    机器学习-学习笔记  神经网络
竞争性学习

机器学习-学习笔记  神经网络
* ART(自适应谐振理论)
机器学习-学习笔记  神经网络

  • SOM(自组织映射)
    机器学习-学习笔记  神经网络

  • 级联相关网络
    机器学习-学习笔记  神经网络

  • Elman网络
    机器学习-学习笔记  神经网络

  • Boltzman机(基于能量的模型)
    分为受限和不受限
    机器学习-学习笔记  神经网络

卷积神经网络

机器学习-学习笔记  神经网络

  • 每个卷积层包含多个特征映射,每个特征映射是一个由多个神经元构成的“平面”,通过一种卷积滤波器提取输入的一种特征
  • 采样层亦称“汇合层”,其作用是基于局部相关性原理进行亚采样,从而在减少数据量的同事保留有用信息
  • 连接层就是传统神经网络对隐层与输出层的全连接