传送门
思路:
本题可用数位DP来做,设 f [ i ][ a ][ b ][ c ][ j ] 表示当前枚举到(二进制下的)第i位,a' b' c'各用a,b,c了几个1,j表示最后一位是否有进位。转移方程就只要暴力枚举8种情况(不同位置及是否进位)。
DP方程:
inline void dp()//动态规划,强行枚举八种情况
{
f[][][][][]=;
for (int i=;i<n;++i)
for (int j=;j<=jla;++j)
for (int k=;k<=jlb;++k)
for (int l=;l<=jlc;++l)
{
long long tmp=f[i][j][k][l][];//枚举最后一位不进位的情况
f[i+][j+][k+][l+][]=min(f[i+][j+][k+][l+][],tmp+(<<i+));
f[i+][j+][k][l+][]=min(f[i+][j+][k][l+][],tmp+(<<i));
f[i+][j][k+][l+][]=min(f[i+][j][k+][l+][],tmp+(<<i));
f[i+][j][k][l][]=min(f[i+][j][k][l][],tmp);
tmp=f[i][j][k][l][];//枚举最后一位进位的情况
f[i+][j+][k+][l+][]=min(f[i+][j+][k+][l+][],tmp+(<<i+));
f[i+][j][k+][l][]=min(f[i+][j][k+][l][],tmp+(<<i));
f[i+][j+][k][l][]=min(f[i+][j+][k][l][],tmp+(<<i));
f[i+][j][k][l][]=min(f[i+][j][k][l][],tmp);
}
}
由上DP转移方程可看出,如果是枚举最后一位进位的情况,则需要转移到不进位的DP方程。因为二进制是逢二进一,最后一位如果为1,且进位,就要变为0;如果是从不进位开始转移,则与进位相反。
完整代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define INF 0x7f7f7f7f7f7f7f
int T,a,b,c;
int n,jla,jlb,jlc;//n记录三个数的二进制数码长度的最大值,jla、jlb、jlc分别记录a、b、c的二进制数码中 1 的个数
long long f[][][][][];
inline int read()//快读
{
char kr=;
char ls;
for(;ls>''||ls<'';kr=ls,ls=getchar());
int xs=;
for(;ls>=''&&ls<='';ls=getchar())
{
xs=xs*+ls-;
}
if(kr=='-') xs=-xs;
return xs;
}
inline int lowbit(int x)//求出x的二进制数码中 1 的个数
{
int sum=;
for (;x;x>>=)
sum+=x&;
return sum;
}
inline void dp()//动态规划,强行枚举八种情况
{
f[][][][][]=;
for (int i=;i<n;++i)
for (int j=;j<=jla;++j)
for (int k=;k<=jlb;++k)
for (int l=;l<=jlc;++l)
{
long long tmp=f[i][j][k][l][];//枚举最后一位不进位的情况
f[i+][j+][k+][l+][]=min(f[i+][j+][k+][l+][],tmp+(<<i+));
f[i+][j+][k][l+][]=min(f[i+][j+][k][l+][],tmp+(<<i));
f[i+][j][k+][l+][]=min(f[i+][j][k+][l+][],tmp+(<<i));
f[i+][j][k][l][]=min(f[i+][j][k][l][],tmp);
tmp=f[i][j][k][l][];//枚举最后一位进位的情况
f[i+][j+][k+][l+][]=min(f[i+][j+][k+][l+][],tmp+(<<i+));
f[i+][j][k+][l][]=min(f[i+][j][k+][l][],tmp+(<<i));
f[i+][j+][k][l][]=min(f[i+][j+][k][l][],tmp+(<<i));
f[i+][j][k][l][]=min(f[i+][j][k][l][],tmp);
}
}
inline void clear()//为做DP初始化
{
memset(f,INF,sizeof(f));
n=max((int)log2(a)+,(int)log2(b)+);
n=max(n,(int)log2(c)+);//求 n
jla=lowbit(a),jlb=lowbit(b),jlc=lowbit(c);
}
int main()
{
a=read();b=read();c=read();
clear();
dp();
if(f[n][jla][jlb][jlc][]>=INF)//注意是“≥INF”
{
printf("-1\n");
return ;
}//如果无解就输出-1
printf("%lld\n",f[n][jla][jlb][jlc][]);//输出最小值
return ;
}
一些注意事项:
①本题的 f 数组要开long long 不然会爆。
②INF也要尽量开大。
②在判断无解时要判 " ≥ INF ”(因为转移过程中会加上部分的值)
其他的一些细节瞎搞搞就AC了。