import tensorflow as tf def model_1():
with tf.variable_scope("var_a"):
a = tf.Variable(initial_value=[1, 2, 3], name="a") vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")]
print(len(vars))
return vars def model_2(): vars1 = model_1() with tf.variable_scope("var_b"):
a = tf.Variable(initial_value=[1, 2, 3], name="a") vars2 = [var for var in tf.trainable_variables() if var.name.startswith("var")]
print(len(vars2))
return vars1 def pretrain_model1():
print("-------- model 1 ------")
vars = model_1() with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.save(sess, "./model.ckpt") def train_model2():
print("-------- model 2 ------") model1_vars = model_2() with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(var_list=model1_vars)
saver.restore(sess, "./model.ckpt")
vars = sess.run([model1_vars])
for var in vars:
print(var) step = 2
if step == 1:
pretrain_model1()
else:
train_model2()