Sample Input
3
1 3 5 2
1 3 5 1
3 5 99 69
Sample Output
Case #1:
No
Case #2:
Yes
Case #3:
Yes
Hint
对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。
解:
m个x组成的数可以表示为x*(1+10+10^2+...+10^m-1)=x*(10^m-1)/9;
即x*(10^m-1)/9%k==c
x*(10^m-1)%(9*k)==9*c?
那么我们就是要求x*(10^m-1)/9 MOD k是不是==c那么,这里有一个分母我们怎么处理呢,肯定有人在想求逆元呀,但是 GCD(9,k)不一定等于1呀,所以求逆元的方法不能用了,那么怎么办呢,我们可以同时扩大9倍也就是求的 x * (10^m-1)MOD 9k 是不是等于 9 * c,剩下的就是
快速幂了。
快速幂了。
#include "cstdio"
#define LL long long
LL quick_mod(LL a,LL b,LL mod)
{
LL ans=;
while(b>)
{
if(b&){
ans=ans*a%mod;
}
a=a*a%mod;
b>>=;
}
return ans;
}
int main()
{
LL T,x,m,k,c;
scanf("%lld",&T);
int con=;
while(T--)
{
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
printf("Case #%d:\n",con++);
LL mod=*k;
LL ans=quick_mod(,m,mod)*x%mod-x;
if(ans==*c)
printf("Yes\n");
else
printf("No\n");
}
return ;
}