tensorflow示例代码注释3

时间:2021-01-12 22:14:31

04_modern_net.py

#!/usr/bin/env python


import tensorflow as tf
import numpy as np
import input_data


def init_weights(shape):
    return tf.Variable(tf.random_normal(shape, stddev=0.01))

//dropout 函数,用于从概率上将一部分input过滤,第二个参数为概率值,从0到1

//relu激励函数

def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden): # this network is the same as the previous one except with an extra hidden layer + dropout
    X = tf.nn.dropout(X, p_keep_input)
    h = tf.nn.relu(tf.matmul(X, w_h))

    h = tf.nn.dropout(h, p_keep_hidden)
    h2 = tf.nn.relu(tf.matmul(h, w_h2))

    h2 = tf.nn.dropout(h2, p_keep_hidden)

    return tf.matmul(h2, w_o)


mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels

X = tf.placeholder("float", [None, 784])
Y = tf.placeholder("float", [None, 10])

w_h = init_weights([784, 625])
w_h2 = init_weights([625, 625])
w_o = init_weights([625, 10])

p_keep_input = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden)


//RMSPropOptimizer  随机梯度下降算法的一种,为何不用minibatch?

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y))
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
predict_op = tf.argmax(py_x, 1)

# Launch the graph in a session
with tf.Session() as sess:
    # you need to initialize all variables
    tf.initialize_all_variables().run()

    for i in range(100):
        for start, end in zip(range(0, len(trX), 128), range(128, len(trX), 128)):
            sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
                                          p_keep_input: 0.8, p_keep_hidden: 0.5})
        print(i, np.mean(np.argmax(teY, axis=1) ==
                         sess.run(predict_op, feed_dict={X: teX, Y: teY,
                                                         p_keep_input: 1.0,
                                                         p_keep_hidden: 1.0})))