题目
分析
深度优先搜索遍历每一种情况,去翻转次数最小的,当然,还要加一些剪枝,毕竟O(nn)的时间复杂度。
代码
C风格
1 /**** 前缀排序 ****/ 2 #include<stdio.h> 3 #include<cstring> 4 #include<algorithm> 5 using namespace std; 6 7 const int maxn = 100 + 10; 8 int n, arr[maxn]; //烙饼个数和烙饼数组 9 int arr_cmp[maxn]; 10 int arr_tmp[maxn]; //记录初始数组 11 12 int search_times = 0; //总搜索次数 13 int max_swap; //最小交换次数 14 int arr_swap[2 * maxn]; //最终翻转方案 15 int tarr_swap[2 * maxn]; //当前翻转方案 16 17 void Init() 18 { 19 for (int i = 0; i < n; i++) arr_tmp[i] = arr_cmp[i] = arr[i]; 20 sort(arr_cmp, arr_cmp + n); 21 max_swap = 2 * (n - 1); 22 } 23 24 void Reverse(int* arr,int start, int end) 25 { 26 for (int i = start, j = end; i < j; i++, j--) 27 swap(arr[i], arr[j]); 28 } 29 30 int LowerBound() 31 { 32 int ret = 0; 33 for (int i = 1; i < n; i++) 34 if (arr[i - 1] > arr[i]) ret++; 35 return ret; 36 } 37 38 bool IsSort() 39 { 40 for (int i = 0; i < n; i++) 41 if (arr_cmp[i] != arr[i]) return false; 42 return true; 43 } 44 45 void Search(int step) 46 { 47 search_times++; 48 49 if (IsSort()) //已排好序 50 { 51 if (step < max_swap) 52 { 53 max_swap = step; 54 for (int i = 0; i < max_swap;i++) arr_swap[i] = tarr_swap[i]; 55 } 56 } 57 58 if ((step + LowerBound()) > max_swap) return; 59 60 for (int i = 1; i <= n; i++) 61 { 62 Reverse(arr,0, i); 63 tarr_swap[step] = i; 64 Search(step + 1); 65 Reverse(arr,0, i); 66 } 67 } 68 69 void Print() 70 { 71 printf("搜索次数:%d\n", search_times); 72 printf("翻转次数: %d\n", max_swap); 73 for (int i = 0; i < max_swap; i++) printf("%d ", arr_swap[i]); 74 printf("\n具体的翻转情况:\n"); 75 for (int i = 0; i < max_swap; i++) 76 { 77 Reverse(arr_tmp, 0, arr_swap[i]); 78 for (int j = 0; j < n; j++) printf("%d ", arr_tmp[j]); 79 printf("\n"); 80 } 81 } 82 83 int main() 84 { 85 scanf("%d", &n); 86 for (int i = 0; i < n; i++) scanf("%d", &arr[i]); 87 Init(); 88 Search(0); 89 Print(); 90 }
C++风格
1 #include<stdio.h> 2 #include<cstring> 3 #include<cassert> //assert宏的原型定义在<assert.h>中 4 #include<algorithm> 5 using namespace std; 6 7 class laobing 8 { 9 private: 10 int* m_CakeArray; //烙饼信息数组 11 int m_nCakeCnt; //烙饼个数 12 int m_nMaxSwap; //最多翻转次数 13 int* m_SwapArray; //最终翻转烙饼位置 14 int* m_ReverseCakeArray; //当前烙饼数组 15 int* m_ReverseCakeArraySwap; //当前翻转烙饼位置 16 int m_nSearch; //搜索次数 17 18 public: 19 laobing() 20 { 21 int m_CakeCnt = 0; 22 int m_nMaxSwap = 0; 23 } 24 ~laobing() 25 { 26 if (m_CakeArray != NULL) delete m_CakeArray; 27 if (m_SwapArray != NULL) delete m_SwapArray; 28 if (m_ReverseCakeArray != NULL) delete m_ReverseCakeArray; 29 if (m_ReverseCakeArraySwap != NULL) delete m_ReverseCakeArraySwap; 30 } 31 32 //计算烙饼翻转信息 33 //pCakeArray 存储烙饼数组 34 //nCakeCnt 烙饼个数 35 void run(int* pCakeArray, int nCakeCnt) 36 { 37 Init(pCakeArray, nCakeCnt); 38 m_nSearch = 0; 39 Search(0); 40 } 41 42 //输出交换过程 43 void OutputArray(int* CakeArray, int nCakeCnt, int* m_SwapArray, int m_nMaxSwap) 44 { 45 for (int i = 0; i < m_nMaxSwap; i++) //每一次交换 46 { 47 Reverse(CakeArray, 0, m_SwapArray[i]); 48 for (int i = 0; i < nCakeCnt; i++) printf("%d ", CakeArray[i]); 49 printf("\n"); 50 } 51 } 52 53 //输出烙饼具体的翻转情况 54 void Output() 55 { 56 for (int i = 0; i < m_nMaxSwap; i++) printf("%d ", m_SwapArray[i]); 57 printf("\n"); 58 printf("Search Times: %d\n", m_nSearch); 59 printf("Total Times: %d\n", m_nMaxSwap); 60 61 OutputArray(m_CakeArray, m_nCakeCnt, m_SwapArray, m_nMaxSwap); 62 } 63 private: 64 void Init(int *pCakeArray, int nCakeCnt) 65 { 66 assert(pCakeArray != NULL); //其作用是如果它的条件返回错误,则终止程序执行。 67 assert(nCakeCnt > 0); 68 69 //初始化烙饼数组 70 m_nCakeCnt = nCakeCnt; 71 m_CakeArray = new int[m_nCakeCnt]; 72 assert(m_CakeArray != NULL); 73 for (int i = 0; i < m_nCakeCnt; i++) 74 m_CakeArray[i] = pCakeArray[i]; 75 76 //设置最多交换次数 77 m_nMaxSwap = UpBound(m_nCakeCnt); 78 79 //初始化交换数组结果 80 m_SwapArray = new int[m_nMaxSwap]; 81 assert(m_SwapArray != NULL); 82 83 //初始化中间交换结果 84 m_ReverseCakeArray = new int[m_nCakeCnt]; 85 for (int i = 0; i < m_nCakeCnt; i++) 86 m_ReverseCakeArray[i] = m_CakeArray[i]; 87 m_ReverseCakeArraySwap = new int[m_nMaxSwap]; 88 } 89 90 //寻找当前翻转次数的上界 91 //n个烙饼,翻转最大的n-2烙饼最多需要2*(n-2)次,剩下的2个最多1次,因而上限值为2*n-3, 92 //因此,m_nMaxSwap初始值可以取2*n-3+1=2*n-2,这样每步与m_nMaxSwap的判断就可以取大等于号。 93 int UpBound(int nCakeCnt) 94 { 95 return 2 * (nCakeCnt - 1); 96 } 97 98 //寻找当前翻转次数的下界 99 int LowerBound(int* pCakeArray, int nCakeCnt) 100 { 101 int ret = 0; 102 103 //根据当前数组的顺序信息来判断最少需要交换多少次 104 for (int i = 1; i < nCakeCnt; i++) 105 { 106 //判断位置相邻的两个烙饼是否是尺寸相邻的 107 int tmp = pCakeArray[i] - pCakeArray[i - 1]; 108 if (tmp == 1 || tmp == -1) continue; 109 else ret++; 110 } 111 if (pCakeArray[nCakeCnt - 1] != nCakeCnt - 1) ret++; //判断下界时,如果最大的烙饼不在最后一个位置,则要多翻转一次 112 return ret; 113 } 114 115 //排序的主函数 116 void Search(int step) 117 { 118 m_nSearch++; 119 // // 估算这次搜索所需要的最小交换次数 120 int nEstimate = LowerBound(m_ReverseCakeArray, m_nCakeCnt); 121 if (step + nEstimate >= m_nMaxSwap) return; //剪枝 122 123 //如果已经排好序,直接输出 124 if (IsSort(m_ReverseCakeArray, m_nCakeCnt)) 125 { 126 if (step < m_nMaxSwap) 127 { 128 m_nMaxSwap = step; 129 for (int i = 0; i < m_nMaxSwap; i++) m_SwapArray[i] = m_ReverseCakeArraySwap[i]; 130 } 131 return; 132 } 133 134 //递归进行翻转 135 for (int i = 1; i < m_nCakeCnt; i++) 136 { 137 Reverse(m_ReverseCakeArray, 0, i); 138 m_ReverseCakeArraySwap[step] = i; 139 Search(step + 1); //递归 140 Reverse(m_ReverseCakeArray,0, i); //回溯 141 } 142 } 143 144 //检查是否排好序 145 bool IsSort(int * pCakeArray, int nCakeCnt) 146 { 147 for(int i = 1;i < nCakeCnt;i++) 148 if (pCakeArray[i - 1] > pCakeArray[i]) return false; 149 return true; 150 } 151 152 //翻转烙饼信息 153 void Reverse(int* m_arr,int nBegin, int nEnd) 154 { 155 assert(nEnd > nBegin); 156 157 for (int i = nBegin, j = nEnd; i < j; i++, j--) 158 swap(m_arr[i], m_arr[j]); 159 } 160 }; 161 162 const int maxn = 100 + 10; 163 int n, arr[maxn]; 164 165 int main() 166 { 167 laobing lb; 168 laobing* p = new laobing(); 169 scanf("%d", &n); 170 for (int i = 0; i < n; i++) scanf("%d", &arr[i]); 171 172 p->run(arr, n); 173 p->Output(); 174 175 lb.run(arr, n); 176 return 0; 177 }
参考链接:
https://blog.csdn.net/tianshuai1111/article/details/7659673
http://blog.sina.com.cn/s/blog_a2aa00d70101ewuf.html
https://blog.csdn.net/ML_algorithmResearch/article/details/50405548