排序算法 之 堆排序 HeapSort

时间:2021-11-27 22:08:54

介绍

堆排序在 top K 问题中使用比较频繁。堆排序是采用二叉堆的数据结构来实现的,虽然实质上还是一维数组。二叉堆是一个近似完全二叉树 。

二叉堆具有以下性质:
- 父节点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
- 每个节点的左右子树都是一个二叉堆(都是最大堆或最小堆)。

步骤

  • 构造最大堆(Build_Max_Heap):若数组下标范围为0~n,考虑到单独一个元素是大根堆,则从下标n/2开始的元素均为大根堆。于是只要从n/2-1开始,向前依次构造大根堆,这样就能保证,构造到某个节点时,它的左右子树都已经是大根堆。
  • 堆排序(HeapSort):由于堆是用数组模拟的。得到一个大根堆后,数组内部并不是有序的。因此需要将堆化数组有序化。思想是移除根节点,并做最大堆调整的递归运算。第一次将heap[0]与heap[n-1]交换,再对heap[0…n-2]做最大堆调整。第二次将heap[0]与heap[n-2]交换,再对heap[0…n-3]做最大堆调整。重复该操作直至heap[0]和heap[1]交换。由于每次都是将最大的数并入到后面的有序区间,故操作完后整个数组就是有序的了。
  • 最大堆调整(Max_Heapify):该方法是提供给上述两个过程调用的。目的是将堆的末端子节点作调整,使得子节点永远小于父节点 。

排序算法 之 堆排序 HeapSort

排序算法 之 堆排序 HeapSort

代码

# -*- coding: utf-8 -*-
""" Created on Wed Apr 27 11:53:24 2016 @author: zang """


from matplotlib import pyplot as plt
import random

def heapSort(ary) :
    n = len(ary)
    first = int(n/2-1)       #最后一个非叶子节点
    for start in range(first,-1,-1) :     #构造大根堆
        max_heapify(ary,start,n-1)
    for end in range(n-1,0,-1):           #堆排,将大根堆转换成有序数组
        ary[end],ary[0] = ary[0],ary[end]
        max_heapify(ary,0,end-1)
    return ary


#最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点
#start为当前需要调整最大堆的位置,end为调整边界
def max_heapify(ary,start,end):
    root = start
    while True :
        child = root*2 +1               #调整节点的子节点
        if child > end : break
        if child+1 <= end and ary[child] < ary[child+1] :
            child = child+1             #取较大的子节点
        if ary[root] < ary[child] :     #较大的子节点成为父节点
            ary[root],ary[child] = ary[child],ary[root]     #交换
            root = child
        else :
            break


def plotScatter(inputList):
    plt.scatter(range(len(inputList)),inputList)
    plt.show()

if __name__ == "__main__":
    num_list = range(1000)
    unsortedList = random.sample(num_list, 30)
    print "unsortedList:"
    plotScatter(unsortedList)
    print unsortedList
    sortedList = heapSort(unsortedList)
    print "sortedList:"
    plotScatter(sortedList)
    print sortedList

测试

输入

[796, 311, 58, 512, 470, 568, 648, 272, 132, 813, 284, 652, 887, 727, 709, 867, 206, 562, 287, 295, 805, 336, 51, 416, 799, 967, 760, 596, 161, 131]

排序算法 之 堆排序 HeapSort

输出

[51, 58, 131, 132, 161, 206, 272, 284, 287, 295, 311, 336, 416, 470, 512, 562, 568, 596, 648, 652, 709, 727, 760, 796, 799, 805, 813, 867, 887, 967]

排序算法 之 堆排序 HeapSort

分析

情况 性能
Worst case performance: O(nlogn)
Best case performance: O(nlogn)
Average case performance: O(nlogn)
Worst case space complexity: O(1)

参考