1.题目:
源码:
import java.util.Properties
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.DataFrameReader
object TestMySQL {
def main(args: Array[String]) {
val spark = SparkSession.builder().appName("RddToDFrame").master("local").getOrCreate()
import spark.implicits._
val employeeRDD = spark.sparkContext.parallelize(Array("3 Mary F 26","4 Tom M 23")).map(_.split(" "))
val schema = StructType(List(StructField("id", IntegerType,true),StructField("name", StringType, true),StructField("gender", StringType,true),StructField("age", IntegerType, true)))
val rowRDD = employeeRDD.map(p => Row(p().toInt,p().trim,p().trim,p().toInt))
val employeeDF = spark.createDataFrame(rowRDD, schema)
val prop = new Properties()
prop.put("user", "root")
prop.put("password", "hadoop")
prop.put("driver","com.mysql.jdbc.Driver")
employeeDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/sparktest","sparktest.employee", prop)
val jdbcDF = spark.read.format("jdbc").option("url","jdbc:mysql://localhost:3306/sparktest").option("driver","com.mysql.jdbc.Driver").option("dbtable","employee").option("user","root").option("password", "hadoop").load()
jdbcDF.agg("age" -> "max", "age" -> "sum").show()
print("ok")
}
}
数据库数据:
结果:
2.编程实现将 RDD 转换为 DataFrame
官网给出两种方法,这里给出一种(使用编程接口,构造一个 schema 并将其应用在已知的 RDD 上。):
源码:
import org.apache.spark.sql.types._
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
object RDDtoDF {
def main(args: Array[String]) {
val spark = SparkSession.builder().appName("RddToDFrame").master("local").getOrCreate()
import spark.implicits._
val employeeRDD =spark.sparkContext.textFile("file:///usr/local/spark/employee.txt")
val schemaString = "id name age"
val fields = schemaString.split(" ").map(fieldName => StructField(fieldName,
StringType, nullable = true))
val schema = StructType(fields)
val rowRDD = employeeRDD.map(_.split(",")).map(attributes =>
Row(attributes().trim, attributes(), attributes().trim))
val employeeDF = spark.createDataFrame(rowRDD, schema)
employeeDF.createOrReplaceTempView("employee")
val results = spark.sql("SELECT id,name,age FROM employee")
results.map(t => "id:"+t()+","+"name:"+t()+","+"age:"+t()).show()
}
}
结果: