题目链接:洛谷
题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$。求 $\sum^r_{i=l}f(i)\ mod\ 998244353$。
$1\leq l\leq r\leq 1.6\times 10^{14}$。
阅读以下内容前请先学会前置技能整除分块
先分析一下 $f(x)$ 的本质。
(读者:不要啰嗦来啰嗦去的好吧!这明显是 $x$ 的约数个数吗!是不是想拖延时间?)
好好好,你赢了。我们来看看如何计算。
看到区间 $[l,r]$ 函数求和,我们应该想到拆成前缀和 $pre(r)-pre(l-1)$。
现在看一看 $pre(x)=\sum^x_{i=1}f(i)$ 如何计算。
我们这样考虑:
$1\sim x$ 中有 $\lfloor\frac{x}{1}\rfloor$ 个 $1$ 的倍数,也就是有 $\lfloor\frac{x}{1}\rfloor$ 个数有约数 $1$。
同理有 $\lfloor\frac{x}{2}\rfloor$ 个数有约数 $2$。
有 $\lfloor\frac{x}{3}\rfloor$ 个数有约数 $3$。
$\dots\dots$
有 $\lfloor\frac{x}{i}\rfloor$ 个数有约数 $i$。
所以 $pre(x)=\sum^x_{i=1}\lfloor\frac{x}{i}\rfloor$。
这个……不就是整除分块模板了吗?
对于一段如何求和难度应该不大,可以自己推出来。
(读者:喂,别这么不良心好吧!)
好吧,$[l,r]$ 这段区间的和为 $\lfloor\frac{x}{l}\rfloor(r-l+1)$。
时间复杂度 $O(\sqrt{r})$,空间复杂度 $O(1)$。
既然是模板题一道,那就直接上代码。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=;
ll l,r;
ll solve(ll x){ //整除分块
ll ans=;
for(ll l=,r;l<=x;l=r+){
r=x/(x/l); //左边界推算右边界
ans=(ans+(r-l+)*(x/l))%mod; //求和
}
return ans;
}
int main(){
scanf("%lld%lld",&l,&r);
printf("%lld\n",((solve(r)-solve(l-))%mod+mod)%mod); //前缀和相减
}
整除分块