51nod 算法马拉松18 B 非010串 矩阵快速幂

时间:2023-03-08 17:47:44
51nod 算法马拉松18 B 非010串 矩阵快速幂

非010串

基准时间限制:1 秒 空间限制:131072 KB 分值: 80
如果一个01字符串满足不存在010这样的子串,那么称它为非010串。
求长度为n的非010串的个数。(对1e9+7取模)
Input
一个数n,表示长度。(n<1e15)
Output
长度为n的非010串的个数。(对1e9+7取模)
Input示例
3
Output示例
7

解释:
000
001
011
100
101
110
111

读完题,这样的题目肯定是能找到规律所在的,要不然数据太大根本无法算。假设现在给的长度是n,答案为f(n),那么假设最后一位是0,前面有010的可能就有f(n-1)种,同样假设最后一位是1,前面有010的可能就也有f(n-1),而这样排除的话还存在着一个问题,就是最后为0的时候可能会出现前面是01而构成010,这样就加重复了。所以假设前一位为1,再减去f(n-2),当然还可能前面是11而构成110而不是010,所以还要把多减的再加回来,即再加上一个f(n-3),这样一来就可以推出一个公式,f(n)=2*f(n-1)-f(n-2)+f(n-3)。看到这个公式,数据有那么大,所以我们用矩阵快速幂来进行处理就可以快速得出结果了。

下面是AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const long long mod=; struct matrix
{
long long a[][];
}; matrix cal(matrix A,matrix B)
{
int i,j,k;
matrix C;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
C.a[i][j]=;
for(k=;k<;k++)
{
C.a[i][j]=(C.a[i][j]+(A.a[i][k]*B.a[k][j])%mod+mod)%mod;
}
}
}
return C;
} int out(matrix A,matrix B)
{
cout<<"s:"<<endl;
cout<<A.a[][]<<" "<<A.a[][]<<" "<<A.a[][]<<endl;
cout<<A.a[][]<<" "<<A.a[][]<<" "<<A.a[][]<<endl;
cout<<A.a[][]<<" "<<A.a[][]<<" "<<A.a[][]<<endl;
cout<<"base:"<<endl;
cout<<B.a[][]<<" "<<B.a[][]<<" "<<B.a[][]<<endl;
cout<<B.a[][]<<" "<<B.a[][]<<" "<<B.a[][]<<endl;
cout<<B.a[][]<<" "<<B.a[][]<<" "<<B.a[][]<<endl;
return ;
} matrix pow_mod(long long x)
{
matrix s,base;
base.a[][]=;
base.a[][]=-;
base.a[][]=;
base.a[][]=;
base.a[][]=base.a[][]=;
base.a[][]=;
base.a[][]=base.a[][]=;
s.a[][]=;
s.a[][]=;
s.a[][]=;
s.a[][]=s.a[][]=s.a[][]=;
s.a[][]=s.a[][]=s.a[][]=;
out(s,base);
while(x)
{
if(x&)
s=cal(s,base);
base=cal(base,base);
out(s,base);
x>>=;
}
return s;
} int main()
{
long long n;
long long ans;
while(scanf("%lld",&n)!=EOF)
{
if(n==)
cout<<<<endl;
else if(n==)
cout<<<<endl;
else if(n==)
cout<<<<endl;
else if(n==)
cout<<<<endl;
else
{
matrix t=pow_mod(n-);
ans=t.a[][]%mod;
cout<<ans<<endl;
/*cout<<t.a[0][1]%mod<<endl;
cout<<t.a[1][0]%mod<<endl;
cout<<t.a[1][1]%mod<<endl;*/
}
}
return ;
}