题意:
一棵树,询问一个子树内出现次数$\ge k$的颜色有几种,Candy?这个沙茶自带强制在线
吐槽:
本来一道可以离散的莫队我非要强制在线用分块做;上午就开始写了然后发现思路错了...;改 下午继续写....然后发现看大了数据范围卡空间了...;改 然后又发现好多bug...;再改 然后发现TLE了... ;改块的大小....可恶又卡空间了.... ;改short...可恶溢出了;改unsigned short....可恶n总共才1e5怎么练unsigned short也溢出了.....; 开O2...还不行....;然后发现之前把块的大小和数量搞反了....;继续改块的大小再加上有理有据对本题特性的vector优化.....终于A了.................
题解:
一开始想成已经知道k预处理f不用第三维了(md那还用分块干什么)
对出现次数$>S$和$\le S$的分开讨论
预处理$f[i][j][k]$为块i到块j出现次数$[k,S]$的有几种
$s[i][j]$为前i块颜色j出现了几次
询问的时候
两边不完整的块暴力枚举
$>S$的部分不超过$\frac{N}{S}$种,单独暴力枚举(注意如果两边枚举过了就不能重复枚举了)
$[k,S]$的部分直接用预处理的f
#pragma GCC optimize ("O2")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=1e5+, M=, S=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,Q,col,a[N],u,v,k;
int cou[N], big[N], tot, mark[N];bool biiig[N];
struct edge{int v,ne;}e[N<<];
int cnt,h[N];
inline void ins(int u,int v){
e[++cnt]=(edge){v,h[u]}; h[u]=cnt;
e[++cnt]=(edge){u,h[v]}; h[v]=cnt;
}
int dfc,L[N],R[N];
int t[N];
void dfs(int u,int fa){
L[u]=++dfc; a[dfc]=t[u];
for(int i=h[u];i;i=e[i].ne)
if(e[i].v!=fa) dfs(e[i].v, u);
R[u]=dfc;
} int block,m,pos[N];
struct _blo{int l,r;}b[M];
void ini(){
//block=sqrt(n);
block=;
m=(n-)/block+;
for(int i=;i<=n;i++) pos[i]=(i-)/block+;
for(int i=;i<=m;i++) b[i].l=(i-)*block+, b[i].r=i*block;
b[m].r=n;
} struct Block{
int f[M][M][S], c[N], s[M][N]; void Set0(int x){
for(int i=;i<=col;i++) s[x][i]=s[x-][i];
for(int i=b[x].l; i<=b[x].r; i++) s[x][a[i]]++;
} void Set1(int x){
for(int t=x;t<=m;t++){
for(int i=b[t].l; i<=b[t].r; i++) if(!biiig[ a[i] ]) c[a[i]]++;
for(int i=b[t].l; i<=b[t].r; i++) if(!biiig[ a[i] ] && c[a[i]]>){
int _=s[t-][a[i]] - s[x-][a[i]];
f[x][t][ _+c[a[i]] ]++;
f[x][t][ _ ]--;
c[a[i]]=;
}
for(int i=block; i>=; i--) f[x][t][i]+=f[x][t][i+];
for(int i=; i<=block; i++) f[x][t][i]+=f[x][t-][i];
}
} int Que(int l,int r,int k){
int pl=pos[l], pr=pos[r];
int ans=;
if(pl==pr){
for(int i=l; i<=r; i++) c[a[i]]++;
for(int i=l; i<=r; i++) if(c[a[i]]>) ans+= c[a[i]]>=k, c[a[i]]=;
}else{
for(int i=; i<=tot; i++) mark[ big[i] ]=;
vector<int> v;
int *rr=s[pr], *ll=s[pl-];
for(int i=l; i<=b[pl].r; i++){
mark[ a[i] ]=;
if(rr[a[i]] - ll[a[i]]>=k)
c[a[i]]++, v.push_back(a[i]);
}
for(int i=b[pr].l; i<=r; i++){
mark[ a[i] ]=;
if(rr[a[i]] - ll[a[i]]>=k)
c[a[i]]++, v.push_back(a[i]);
} for(int i=; i<(int)v.size(); i++) if(c[v[i]]>){
int _=s[pr-][v[i]] - s[pl][v[i]];
if(biiig[ v[i] ]) ans+= _+c[v[i]]>=k;
else ans+= (_<k && _+c[v[i]]>=k);
c[v[i]]=;
} if(k<=block) ans+=f[pl+][pr-][k];
for(int i=;i<=tot;i++) if(!mark[ big[i] ])
ans+= s[pr-][big[i]] - s[pl][big[i]] >= k;
}
return ans;
}
}B; int main(){
// freopen("in","r",stdin);
n=read(); Q=read(); ini();
for(int i=;i<=n;i++) a[i]=t[i]=read(), col=max(col, a[i]), cou[a[i]]++;
for(int i=;i<n;i++) ins(read(), read());
dfs(,); for(int i=;i<=col;i++) if(cou[i]>block) big[++tot]=i, biiig[i]=;
for(int i=;i<=m;i++) B.Set0(i);
for(int i=;i<=m;i++) B.Set1(i); while(Q--){
u=read(); k=read();
printf("%d\n", B.Que(L[u], R[u], k) );
}
}