Let's say i have a 2d boolean numpy array like this:
假设我有一个像这样的2d布尔numpy数组:
import numpy as np
a = np.array([
[0,0,0,0,0,0],
[0,1,0,1,0,0],
[0,1,1,0,0,0],
[0,0,0,0,0,0],
], dtype=bool)
How can i in general crop it to the smallest box (rectangle, kernel) that includes all True values?
我怎样才能将它裁剪到包含所有True值的最小框(矩形,内核)?
So in the example above:
所以在上面的例子中:
b = np.array([
[1,0,1],
[1,1,0],
], dtype=bool)
2 个解决方案
#1
3
After some more fiddling with this, i actually found a solution myself:
经过一番摆弄,我实际上找到了一个解决方案:
coords = np.argwhere(a)
x_min, y_min = coords.min(axis=0)
x_max, y_max = coords.max(axis=0)
b = cropped = a[x_min:x_max+1, y_min:y_max+1]
The above works for boolean arrays out of the box. In case you have other conditions like a threshold t
and want to crop to values larger than t, simply modify the first line:
以上适用于开箱即用的布尔数组。如果你有其他条件,如阈值t,并想要裁剪到大于t的值,只需修改第一行:
coords = np.argwhere(a > t)
#2
0
Here's one with slicing and argmax
to get the bounds -
这里有一个切片和argmax来获得界限 -
def smallestbox(a):
r = a.any(1)
if r.any():
m,n = a.shape
c = a.any(0)
out = a[r.argmax():m-r[::-1].argmax(), c.argmax():n-c[::-1].argmax()]
else:
out = np.empty((0,0),dtype=bool)
return out
Sample runs -
样品运行 -
In [142]: a
Out[142]:
array([[False, False, False, False, False, False],
[False, True, False, True, False, False],
[False, True, True, False, False, False],
[False, False, False, False, False, False]])
In [143]: smallestbox(a)
Out[143]:
array([[ True, False, True],
[ True, True, False]])
In [144]: a[:] = 0
In [145]: smallestbox(a)
Out[145]: array([], shape=(0, 0), dtype=bool)
In [146]: a[2,2] = 1
In [147]: smallestbox(a)
Out[147]: array([[ True]])
Benchmarking
Other approach(es) -
其他方法 -
def argwhere_app(a): # @Jörn Hees's soln
coords = np.argwhere(a)
x_min, y_min = coords.min(axis=0)
x_max, y_max = coords.max(axis=0)
return a[x_min:x_max+1, y_min:y_max+1]
Timings for varying degrees of sparsity (approx. 10%, 50% & 90%) -
不同程度稀疏度的计时(约10%,50%和90%) -
In [370]: np.random.seed(0)
...: a = np.random.rand(5000,5000)>0.1
In [371]: %timeit argwhere_app(a)
...: %timeit smallestbox(a)
1 loop, best of 3: 310 ms per loop
100 loops, best of 3: 3.19 ms per loop
In [372]: np.random.seed(0)
...: a = np.random.rand(5000,5000)>0.5
In [373]: %timeit argwhere_app(a)
...: %timeit smallestbox(a)
1 loop, best of 3: 324 ms per loop
100 loops, best of 3: 3.21 ms per loop
In [374]: np.random.seed(0)
...: a = np.random.rand(5000,5000)>0.9
In [375]: %timeit argwhere_app(a)
...: %timeit smallestbox(a)
10 loops, best of 3: 106 ms per loop
100 loops, best of 3: 3.19 ms per loop
#1
3
After some more fiddling with this, i actually found a solution myself:
经过一番摆弄,我实际上找到了一个解决方案:
coords = np.argwhere(a)
x_min, y_min = coords.min(axis=0)
x_max, y_max = coords.max(axis=0)
b = cropped = a[x_min:x_max+1, y_min:y_max+1]
The above works for boolean arrays out of the box. In case you have other conditions like a threshold t
and want to crop to values larger than t, simply modify the first line:
以上适用于开箱即用的布尔数组。如果你有其他条件,如阈值t,并想要裁剪到大于t的值,只需修改第一行:
coords = np.argwhere(a > t)
#2
0
Here's one with slicing and argmax
to get the bounds -
这里有一个切片和argmax来获得界限 -
def smallestbox(a):
r = a.any(1)
if r.any():
m,n = a.shape
c = a.any(0)
out = a[r.argmax():m-r[::-1].argmax(), c.argmax():n-c[::-1].argmax()]
else:
out = np.empty((0,0),dtype=bool)
return out
Sample runs -
样品运行 -
In [142]: a
Out[142]:
array([[False, False, False, False, False, False],
[False, True, False, True, False, False],
[False, True, True, False, False, False],
[False, False, False, False, False, False]])
In [143]: smallestbox(a)
Out[143]:
array([[ True, False, True],
[ True, True, False]])
In [144]: a[:] = 0
In [145]: smallestbox(a)
Out[145]: array([], shape=(0, 0), dtype=bool)
In [146]: a[2,2] = 1
In [147]: smallestbox(a)
Out[147]: array([[ True]])
Benchmarking
Other approach(es) -
其他方法 -
def argwhere_app(a): # @Jörn Hees's soln
coords = np.argwhere(a)
x_min, y_min = coords.min(axis=0)
x_max, y_max = coords.max(axis=0)
return a[x_min:x_max+1, y_min:y_max+1]
Timings for varying degrees of sparsity (approx. 10%, 50% & 90%) -
不同程度稀疏度的计时(约10%,50%和90%) -
In [370]: np.random.seed(0)
...: a = np.random.rand(5000,5000)>0.1
In [371]: %timeit argwhere_app(a)
...: %timeit smallestbox(a)
1 loop, best of 3: 310 ms per loop
100 loops, best of 3: 3.19 ms per loop
In [372]: np.random.seed(0)
...: a = np.random.rand(5000,5000)>0.5
In [373]: %timeit argwhere_app(a)
...: %timeit smallestbox(a)
1 loop, best of 3: 324 ms per loop
100 loops, best of 3: 3.21 ms per loop
In [374]: np.random.seed(0)
...: a = np.random.rand(5000,5000)>0.9
In [375]: %timeit argwhere_app(a)
...: %timeit smallestbox(a)
10 loops, best of 3: 106 ms per loop
100 loops, best of 3: 3.19 ms per loop