Render OpenCascade Geometry Surfaces in OpenSceneGraph

时间:2023-03-08 17:40:44
Render OpenCascade Geometry Surfaces in OpenSceneGraph

在OpenSceneGraph中绘制OpenCascade的曲面

Render OpenCascade Geometry Surfaces in OpenSceneGraph

eryar@163.com

摘要Abstract:本文对OpenCascade中的几何曲面数据进行简要说明,并结合OpenSceneGraph将这些曲面显示。

关键字Key Words:OpenCascade、OpenSceneGraph、Geometry Surface、NURBS

一、引言 Introduction

《BRep Format Description White Paper》中对OpenCascade的几何数据结构进行了详细说明。BRep文件中用到的曲面总共有11种:

1.Plane 平面;

2.Cylinder 圆柱面;

3.Cone 圆锥面;

4.Sphere 球面;

5.Torus 圆环面;

6.Linear Extrusion 线性拉伸面;

7.Revolution Surface 旋转曲面;

8.Bezier Surface 贝塞尔面;

9.B-Spline Surface B样条曲面;

10.Rectangle Trim Surface 矩形裁剪曲面;

11.Offset Surface 偏移曲面;

曲面的几何数据类都有一个共同的基类Geom_Surface,类图如下所示:

Render OpenCascade Geometry Surfaces in OpenSceneGraph

Figure 1.1 Geometry Surface class diagram

抽象基类Geom_Surface有几个纯虚函数Bounds()、Value()等,可用来计算曲面上的点。类图如下所示:

Render OpenCascade Geometry Surfaces in OpenSceneGraph

Figure 1.2 Geom_Surface class diagram

与另一几何内核sgCore中的几何的概念一致,几何(geometry)是用参数方程对曲线曲面精确表示的。

每种曲面都对纯虚函数进行实现,使计算曲面上点的方式统一。

曲线C(u)是单参数的矢值函数,它是由直线段到三维欧几里得空间的映射。曲面是关于两个参数u和v的矢值函数,它表示由uv平面上的二维区域R到三维欧几里得空间的映射。把曲面表示成双参数的形式为:

Render OpenCascade Geometry Surfaces in OpenSceneGraph

它的参数方程为:

Render OpenCascade Geometry Surfaces in OpenSceneGraph

u,v参数形成了一个参数平面,参数的变化区间在参数平面上构成一个矩形区域。正常情况下,参数域内的点(u,v)与曲面上的点r(u,v)是一一对应的映射关系。

给定一个具体的曲面方程,称之为给定了一个曲面的参数化。它既决定了所表示的曲面的形状,也决定了该曲面上的点与其参数域内的点的一种对应关系。同样地,曲面的参数化不是唯一的。

曲面双参数u,v的变化范围往往取为单位正方形,即u∈[0,1],v∈[0,1]。这样讨论曲面方程时,即简单、方便,又不失一般性。

二、程序示例 Code Example

使用函数Value(u, v)根据参数计算出曲面上的点,将点分u,v方向连成线,可以绘制出曲面的线框模型。程序如下所示:

/*
* Copyright (c) 2013 eryar All Rights Reserved.
*
* File : Main.cpp
* Author : eryar@163.com
* Date : 2013-08-11 10:36
* Version : V1.0
*
* Description : Draw OpenCascade Geometry Surfaces in OpenSceneGraph.
*
*/ // OpenSceneGraph
#include <osgDB/ReadFile>
#include <osgViewer/Viewer>
#include <osgGA/StateSetManipulator>
#include <osgViewer/ViewerEventHandlers> #pragma comment(lib, "osgd.lib")
#pragma comment(lib, "osgDBd.lib")
#pragma comment(lib, "osgGAd.lib")
#pragma comment(lib, "osgViewerd.lib") // OpenCascade
#define WNT
#include <TColgp_Array2OfPnt.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColGeom_Array2OfBezierSurface.hxx>
#include <GeomConvert_CompBezierSurfacesToBSplineSurface.hxx> #include <Geom_Surface.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_ConicalSurface.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_Plane.hxx>
#include <Geom_ToroidalSurface.hxx>
#include <Geom_SphericalSurface.hxx> #pragma comment(lib, "TKernel.lib")
#pragma comment(lib, "TKMath.lib")
#pragma comment(lib, "TKG3d.lib")
#pragma comment(lib, "TKGeomBase.lib") // Approximation Delta.
const double APPROXIMATION_DELTA = 0.1; /**
* @breif Build geometry surface.
*/
osg::Node* buildSurface(const Geom_Surface& surface)
{
osg::ref_ptr<osg::Geode> geode = new osg::Geode(); gp_Pnt point;
Standard_Real uFirst = 0.0;
Standard_Real vFirst = 0.0;
Standard_Real uLast = 0.0;
Standard_Real vLast = 0.0; surface.Bounds(uFirst, uLast, vFirst, vLast); Precision::IsNegativeInfinite(uFirst) ? uFirst = -1.0 : uFirst;
Precision::IsInfinite(uLast) ? uLast = 1.0 : uLast; Precision::IsNegativeInfinite(vFirst) ? vFirst = -1.0 : vFirst;
Precision::IsInfinite(vLast) ? vLast = 1.0 : vLast; // Approximation in v direction.
for (Standard_Real u = uFirst; u <= uLast; u += APPROXIMATION_DELTA)
{
osg::ref_ptr<osg::Geometry> linesGeom = new osg::Geometry();
osg::ref_ptr<osg::Vec3Array> pointsVec = new osg::Vec3Array(); for (Standard_Real v = vFirst; v <= vLast; v += APPROXIMATION_DELTA)
{
point = surface.Value(u, v); pointsVec->push_back(osg::Vec3(point.X(), point.Y(), point.Z()));
} // Set the colors.
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;
colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 0.0f));
linesGeom->setColorArray(colors.get());
linesGeom->setColorBinding(osg::Geometry::BIND_OVERALL); // Set the normal in the same way of color.
osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;
normals->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));
linesGeom->setNormalArray(normals.get());
linesGeom->setNormalBinding(osg::Geometry::BIND_OVERALL); // Set vertex array.
linesGeom->setVertexArray(pointsVec);
linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP, , pointsVec->size())); geode->addDrawable(linesGeom.get());
} // Approximation in u direction.
for (Standard_Real v = vFirst; v <= vLast; v += APPROXIMATION_DELTA)
{
osg::ref_ptr<osg::Geometry> linesGeom = new osg::Geometry();
osg::ref_ptr<osg::Vec3Array> pointsVec = new osg::Vec3Array(); for (Standard_Real u = vFirst; u <= uLast; u += APPROXIMATION_DELTA)
{
point = surface.Value(u, v); pointsVec->push_back(osg::Vec3(point.X(), point.Y(), point.Z()));
} // Set the colors.
osg::ref_ptr<osg::Vec4Array> colors = new osg::Vec4Array;
colors->push_back(osg::Vec4(1.0f, 1.0f, 0.0f, 0.0f));
linesGeom->setColorArray(colors.get());
linesGeom->setColorBinding(osg::Geometry::BIND_OVERALL); // Set the normal in the same way of color.
osg::ref_ptr<osg::Vec3Array> normals = new osg::Vec3Array;
normals->push_back(osg::Vec3(0.0f, -1.0f, 0.0f));
linesGeom->setNormalArray(normals.get());
linesGeom->setNormalBinding(osg::Geometry::BIND_OVERALL); // Set vertex array.
linesGeom->setVertexArray(pointsVec);
linesGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::LINE_STRIP, , pointsVec->size())); geode->addDrawable(linesGeom.get());
} return geode.release();
} /**
* @breif Test geometry surfaces of OpenCascade.
*/
osg::Node* buildScene(void)
{
osg::ref_ptr<osg::Group> root = new osg::Group(); // Test Plane.
Geom_Plane plane(gp::XOY());
root->addChild(buildSurface(plane)); // Test Bezier Surface and B-Spline Surface.
TColgp_Array2OfPnt array1(,,,);
TColgp_Array2OfPnt array2(,,,);
TColgp_Array2OfPnt array3(,,,);
TColgp_Array2OfPnt array4(,,,); array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,));
array1.SetValue(,,gp_Pnt(,,)); array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,));
array2.SetValue(,,gp_Pnt(,,)); array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,));
array3.SetValue(,,gp_Pnt(,,)); array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,));
array4.SetValue(,,gp_Pnt(,,)); Geom_BezierSurface BZ1(array1);
Geom_BezierSurface BZ2(array2);
Geom_BezierSurface BZ3(array3);
Geom_BezierSurface BZ4(array4);
root->addChild(buildSurface(BZ1));
root->addChild(buildSurface(BZ2));
root->addChild(buildSurface(BZ3));
root->addChild(buildSurface(BZ4)); Handle_Geom_BezierSurface BS1 = new Geom_BezierSurface(array1);
Handle_Geom_BezierSurface BS2 = new Geom_BezierSurface(array2);
Handle_Geom_BezierSurface BS3 = new Geom_BezierSurface(array3);
Handle_Geom_BezierSurface BS4 = new Geom_BezierSurface(array4);
TColGeom_Array2OfBezierSurface bezierarray(,,,);
bezierarray.SetValue(,,BS1);
bezierarray.SetValue(,,BS2);
bezierarray.SetValue(,,BS3);
bezierarray.SetValue(,,BS4); GeomConvert_CompBezierSurfacesToBSplineSurface BB (bezierarray); if (BB.IsDone())
{
Geom_BSplineSurface BSPLSURF(
BB.Poles()->Array2(),
BB.UKnots()->Array1(),
BB.VKnots()->Array1(),
BB.UMultiplicities()->Array1(),
BB.VMultiplicities()->Array1(),
BB.UDegree(),
BB.VDegree() ); BSPLSURF.Translate(gp_Vec(,,)); root->addChild(buildSurface(BSPLSURF));
} // Test Spherical Surface.
Geom_SphericalSurface sphericalSurface(gp::XOY(), 1.0);
sphericalSurface.Translate(gp_Vec(2.5, 0.0, 0.0));
root->addChild(buildSurface(sphericalSurface)); // Test Conical Surface.
Geom_ConicalSurface conicalSurface(gp::XOY(), M_PI/, 1.0);
conicalSurface.Translate(gp_Vec(5.0, 0.0, 0.0));
root->addChild(buildSurface(conicalSurface)); // Test Cylindrical Surface.
Geom_CylindricalSurface cylindricalSurface(gp::XOY(), 1.0);
cylindricalSurface.Translate(gp_Vec(8.0, 0.0, 0.0));
root->addChild(buildSurface(cylindricalSurface)); // Test Toroidal Surface.
Geom_ToroidalSurface toroidalSurface(gp::XOY(), 1.0, 0.2);
toroidalSurface.Translate(gp_Vec(11.0, 0.0, 0.0));
root->addChild(buildSurface(toroidalSurface)); return root.release();
} int main(int argc, char* argv[])
{
osgViewer::Viewer myViewer; myViewer.setSceneData(buildScene()); myViewer.addEventHandler(new osgGA::StateSetManipulator(myViewer.getCamera()->getOrCreateStateSet()));
myViewer.addEventHandler(new osgViewer::StatsHandler);
myViewer.addEventHandler(new osgViewer::WindowSizeHandler); return myViewer.run();
}

程序效果如下图所示:

Render OpenCascade Geometry Surfaces in OpenSceneGraph

Figure 2.1 OpenCascade Geometry Surfaces in OpenSceneGraph

三、结论 Conclusion

根据OpenCascade中的几何曲面的函数Value(u, v)可以计算出曲面上的点。分u方向和v方向分别绘制曲面上的点,并将之连接成线,即可以表示出曲面的线框模型。因为这样的模型没有面的信息,所以不能有光照效果、材质效果等。要有光照、材质的信息,必须将曲面进行三角剖分。相关的剖分算法有Delaunay三角剖分等。